
11..  CCOOMMPPLLEEXX NNUUMMBBEERRSS

LLeeiibbnniizz  ((11770022))  ddeessccrriibbeedd  ccoommpplleexx
nnuummbbeerrss  aass  ‘‘tthhaatt  wwoonnddeerrffuull  ccrreeaattiioonn

ooff  aann  iiddeeaall  wwoorrlldd,,  aallmmoosstt  aann
aammpphhiibbiiaann  bbeettwweeeenn  tthhiinnggss  tthhaatt  aarree

aanndd  tthhiinnggss  tthhaatt  aarree  nnoott’’..

A short history
The history of the complex numbers is very interesting. By the 16th Century, although
no-one understood exactly what a complex number was, it was found that complex
numbers were a useful tool for solving problems. Later, mathematicians tried to
understand the complex numbers. This led in turn to investigations of the real numbers,
the rational numbers, the integers and finally the natural numbers. So historically there
was a reverse development: the more complicated system was found to be useful early
on, and the study of the simplest systems were left till later.
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Definition

Complex numbers are defined as
ordered pairs z = (x, y) of real num-
bers x and y. We shall define addition
and multiplication of these numbers
shortly.
We identify the pairs (x, 0) with the
real numbers x. This means that the
real numbers can be thought of as a
subset of the complex numbers.
Complex numbers of the form (0, y)
are said to be pure imaginary
numbers. The numbers x and y are
now called the real and imaginary
parts of z respectively, and we write
x = Re z, y = Im z. 

Equality

Two complex numbers are equal if they have
the same real and imaginary parts. Thus 

(x 1,  y 1)   =   (x 2,  y 2) if and only if 
x 1 =  x 2,  y 1 =  y 2.

Sum and product
The sum z1 + z2 and product z1.z2 of                
z1 =  x1 + y1 and  z2 =  x2 + y2 are defined by:

(x1, y1) + (x2, y2)  =  (x1 + x2, y1 + y2),
(x1, y1).(x2, y2)  =  (x1x2 – y1y2, x1y2 + x2y1).

This last definition looks pretty weird, but we
shall shortly see the reason for it.



Understanding the operations

With these definitions of addition and
multiplication, we have

(x, y)  =  (x, 0) + (0, 1)(y, 0).
The set of complex numbers of the form
(x, 0) act just like the real numbers R.
Further, setting  i = (0, 1) gives z =  (x, y)
=  x + iy, and we have

i 2 =  (0, 1).(0, 1)  =  (–1, 0),  that is,  i 2 =  –1.

Addition and multiplication can now be
rewritten as the more usual:

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),

(x1 + iy1).(x2 + iy2)  = 
(x1x2 – y1y2) + i(y1x2 + x1y2).

Comments

1. Why did we not just start here? Notice
that our derivation of i is firmly based on
the real numbers. There is no ‘magic’
about √(–1), contrary to the use of the
historical word ‘imaginary’.

2. We can now perform complex operations
by treating the terms as real, and substitut-
ing  i2 =  – 1.

Example
(2 + 3i) + (4 + 5i) = (2 + 4) + (3 + 5)i = 6 + 8i,
and
(2 + 3i).(4 + 5i)  =  (2.4 + 3i.5 i) + (2.5 i + 3.4i)

=  (8 – 15) + (10 + 12)i =  –7 + 22i.



QUIZ 1.1AQUIZ 1.1A

1. The sum of  3 + i and 7 + 5i is  

2. The product of  3 + i and 7 + 5i is 

3. The product of  i and  – i is

4. The product of  1 + 2i and 1 –  2i is 

1. 10 + 6 i

2. 16 + 22 i

3. 1

4. 5 X



QUIZ 1.1BQUIZ 1.1B

With these definitions of addition and multiplication, we have { 1 }.  The
set of complex numbers of the form { 2 }  act just like the real numbers
R.  Further, setting { 3 } gives  z =  (x, y)  =  x + i y, and we have { 4 },
that is,  i 2 =  – 1.   Addition and multiplication can now be rewritten as
the more usual: 

(x1, y1) + (x 2, y 2)  =  (x1 + x 2, y1 + y 2),
(x1 + iy1) . (x 2 + iy 2)  =  (x1x 2 – y1y 2) + i (y1x 2 + x1y 2).

Match the above missing items  1, 2, 3, 4 with the selections 

(a) i =  (0, 1),  (b) (x, y)  =  (x, 0) + (0, 1) (y, 0),
(c) i 2 =  (0, 1) . (0, 1)   =  (– 1, 0),  (d) (x, 0).

1.                   2.                   3.                     4.

1. (b)

2.  (d)

3. (a)

4. (c)
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Algebraic properties

The complex numbers behave in
much the same way as the real
numbers. 
In particular they form a field. 

Some of the laws satisfied are:
The Commutative Laws:

z1 + z2 =  z2 + z1; z1z2 = z2z1;
The Associative Laws:

(z1 + z2) + z3 =  z1 + (z2 + z3); 
(z1z2)z3 =  z1(z2z3);

The Distributive Law:
z1(z2 + z3)  =  z1z2 + z1z3.

These are easily proved by writing
the zs in the form x + iy and using
the corresponding properties of the
real numbers.

Other field axioms
We now use the idea of inverse to define division of
complex numbers in the following way:

z1/z2 =  z1 . z2
– 1 (z2 ≠ 0).

Try writing this out in terms of the real and imaginary
parts! Later we shall give an easier way of dividing
complex numbers. Clearly division by zero is not
allowed, as z2

–1 is undefined when z2 = 0.

The expressions below follow from this definition:
1  =  1 . 1 ,  z1 + z2 = z1 + z2 ,   z1z2 =  z1 . z2z1z2 z1 z2 z3 z3 z3 z3z4 z3 z4

As mentioned earlier, complex numbers (like the
reals) form a field, C. However, it is not possible to
order C. Thus expressions like z > 0, z1 < z2 are
meaningless unless the complex numbers are real.

Example

  1    .   1    =   1  . 5 + i = 5 + i = 5 +   i 
2 – 3i 1 + i      5 – i   5 + i 26         26      26



QUIZ 1.2QUIZ 1.2

1. The integers form a field under addition 
and multiplication.
(a)  True ;  (b)  False .

2. 3 + 2i >   2 + i
(a) True ;  (b)  False    ;  
(c)  Neither .

3. z1(z 2z 3)  =  (z1z 2)z 3 is the 
law.

4. 2/ (1 + i ) is another expression for 1 –  i.

(a) True ;  (b)  False .

1. (b)  False: e.g. not 
closed under division.

2. (c)  Neither of these 
(C is not ordered).

3. (b)   Associative.

4. (a)  True: multiply by  
(1 – i) /(1 – i).
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Cartesian coordinates

We set up the natural correspondence z = x + iy ↔ (x, y) between the complex number
z and the point (x, y ) in the cartesian plane. Each complex number corresponds to
exactly one point in the plane, and conversely. For example, 1 + 2i is represented by the
point (1, 2). Notice how this corresponds to our original ‘ordered pair’ definition of a

complex number. We can think of the complex
number z either as the point (x, y ) or as the vector
from the origin to this point.

The plane of such representative points is called
the Argand diagram, or the complex plane or the
z - plane.

The x-axis is called the real axis and the y-axis
is called the imaginary axis. 3

4 3 + 4i

x

y

O



Sum and difference
We now have an immedi-
ate geometric interpreta-
tion of the sum and differ-
ence of two complex num-
bers (below).

Notice the direction of the
arrow representing z1 – z2.

Modulus and distance
The modulus or absolute value of a complex number z = 

–––––
x + iy is defined to be | z | = √x2 + y2. When y = 0, z is real, 
and we have the usual absolute value of a real number.
The (real) number | z | denotes the length of the vector repre-
senting z, or the distance of the point (x, y) from the origin
O. Even though z1 <  z2 is meaningless, note that | z1 | < | z2 |
is a valid statement, meaning  z1 is closer to  O than  z2. 

We can extend this idea to see that _________________
| z1 – z2 |  =  √(x1 – x2)2 + (y1 – y2)2

is the distance between the points representing z1 and z2.

x

y

O
z2

z1

z1 + z2

z1 – z2

Example Find the locus of points z satisfying  | z – i |  =  3.
We are looking at points z which are distant 3 from the fixed
point i. That is, a circle of radius 3 and centre i = (0,1).
If we express z = x + iy, then | z – i | = 3 becomes the  
equation of this circle:

–––––––––
√x2 + (y – 1)2 =  3,   or x2 + (y – 1)2 =  9.



Modulus and conjugate

From the definition of | z |, we have

|  z | 2 =  (Re z )2 + (Im z )2,

from which it follows that 
| z |  ≥ | Re z |  ≥ Re z , and  
| z |  ≥ | Im z |  ≥ Im z.

The complex conjugate or conjugate of  z =  x + iy is the
number z– =  x  –  iy. 

The number  z– is represented in the complex plane by the point
(x, – y ) – the reflection in the x-axis of the point representing z.

We observe that for all z,

z–– =  z , and  | z– |  =  | z |.

x

y

O

z = x + iy
(x, y)

z = x – iy
(x, –y)

–

Argand

Jean Robert Argand (1768 – 1822)
was a Swiss bookkeeper.  In 1806 he
published a paper associating the
complex numbers with points in the
complex plane.  The plane of complex
numbers is now often called the
Argand plane.



More properties of the conjugate

The following properties are easy to establish
from the definitions:
_____   _    _    ___  _ _    ___    _ _
z1 + z2 = z1 + z2 ,  z1.z2 = z1.z2 ,  z1/z2 = z1/z2 .

We also have Re z =  12 (z + z– ),
Im z =  12 (z – z– ).

Finally, z . z– =  | z | 2 =   x2 + y2, 
so for  z2  ≠ 0, z1 =

z1.z
–

2 =
z1.z

–
2__ ______ ______

z2 z2.z
–

2 | z2 | 2

This gives us a nice way to find the quotient of two complex numbers.

Example

1+ 8i (1 + 8i)(2 – i)        10 + 15 i____   =       ___________  =  ________  =  2 + 3i
2 + i            (2 + i)(2 – i)               5

Wessel

Casper Wessel (1745 – 1818) was a
Norwegian surveyor.  He published a
paper in 1797 linking complex num-
bers to points in the plane, but the
paper remained unnoticed for 100
years!



The triangle inequality

The relation  z.z– =  | z |2 quickly gives 

| z1.z2 |  =  | z1 |.| z2 |, | z1/z2 |  =  | z1 | / | z2 |.

| z1.z2 |  =  | z1 |.| z2 |, | z1/z2 |  =  | z1 | / | z2 |.

It is also not too hard to derive the    

� Triangle Inequality:

| z1 + z2 |  ≤ | z1 | + | z2 |.

(Proof at right)

It is easy to extend this to larger finite sums:

|z1 + z2 + z3|  ≤ |z1 + z2|  +  |z3|  
≤ |z1|  +  |z2|  +  |z3| .

Proof of the inequality
______

|z1 + z2|2 = (z1 + z2)(z1 + z2)
_       _

= (z1 + z2)(z1 + z2)
_        _ _        _    

= z1z1 + z1z2 + z2z1 + z2z2

≤ | z1 | 2 + 2| z1 |.| z2 | + | z1 | 2

_         _                   _              _
since z1z2 + z2z1 = 2 Re(z1z2) ≤ | z1z2 | 

= | z1.z2 | = | z1 |.| z2 |;

= (| z1 | + | z2 |) 2



More on the triangle inequality

The triangle inequality becomes clear when seen 
geometrically, as in the adjacent figure. It just says that the
length of any side of a triangle is not more than the sum of
the lengths of the remaining two sides.

Another useful result is the ModDiff Inequality:

| | z1 | – | z2 | | ≤ | z1 + z2 | .

We can think of this as providing a lower bound for |z1 + z2|.

Proof | z1 |  =  | (z1 + z2) + (– z2) |  ≤ | z1 + z2 | + | –z2 |

so | z1 | – | z2 |  ≤ | z1 + z2 |.

Similarly, 
| z2 | – | z1 |  ≤ | z1 + z2 |,  

giving the required result.

x

y

O

z

z

z  + z
1

1

2
2



QUIZ 1.3AQUIZ 1.3A

1. | 3 + 4i |  =

2. If  z =  z–,  then  z is

(a)  Real ;  (b)  Imaginary ;  

(c)  Neither .
___        __  __

3. z1z 2 =  z1 . z2  .

(a) True ;  (b)  False        .

4. | z1 + z2 | ? | z1 |  +  | z2 |.

(a)    ≥ ;  (b)    ≤ .

1. 5   
| 3 + 4 i |  =  √(32 + 42)  =  5.

2. (a)  If x + iy  =  x – iy,
then y =  0 and  z is real.

3. (a)  True.

4. (b)  This is the Triangle 
Inequality.

X



QUIZ 1.3BQUIZ 1.3B

The Triangle Inequality is   | z1 + z2 |  ≤ | z1 | + | z2 |.
_____

Proof: | z1 + z2 |2 =  (z1 + z2)(z1 + z2)  =  { 1 }
_       _      _        _

=  z1z1 + z1z2 + z2z1 + z2z2   ≤ { 2 }
_        _                           _

(since z1z2 + z2z1 =  2 { 3 }  ≤ 2| z1z2 |  =  2 | z1z2 |  =  { 4 }.)

=  ( |z1|  +  |z 2| ) 2

Match the above boxes 1, 2, 3, 4 with the selections 
_

(a) Re (z1z2),   (b) 2| z1 |.| z2 |, _ _
(c) | z1 | 2 + 2| z1 |.| z2 | + | z2 | 2, (d) (z1 + z2)(z1 + z2)

1. (d)

2. (c)

3. (a)

4.  (b)

X



Polar Coordinates

We say that  z = (x,  y) has polar coordinates (r ,  θ ) when x  =  r cos θ, y  =  r sin θ. 
We write

z  =  r cos θ + ir sin θ =  r cis θ. 

Note that r = | z |. We write  θ = arg z –  the argument of z.  The argument is always
expressed in radians. We can find θ from the relationship tan θ =  y/x.

The angle  θ is not unique: thus θ ± 2 k π is equally valid.

We use  Arg z to denote the value of arg z satisfying  – π <  arg z ≤ π .  
This is the principal value of the argument.

If z =  0, arg z is undefined. We adopt the convention that if z is expressed in polar
form, then  z ≠ 0.

Example

1 + √3 i =  2(cos π/3 + i sin π/3).



Example 

Set     z1 =   –1,  z2 =   i .
Then   Arg (z1 . z2)  =  Arg (– i)  =   – π /2, while 

Arg z1 + Arg z2 =   + π +  π/2 =  3π /2.

Using polar coordinates

We begin with a natural extension: z – z0 =  cis θ. 
Here,  r =  |z – z0|,  and  θ =  arg (z – z0 ).

The adjacent figure illustrates the situation.

The polar form is important because it gives a very simple
method of multiplying and dividing complex numbers. This
is because

arg (z1 . z2)  =  arg z1 + arg z2 (*)

We shall prove this shortly, but notice that this relation may
fail for the principal value ‘Arg’.

x

y

O

z0

z
r
φ



Proof of the Argument Identity

We now prove the identity   arg (z1.z2)   =   arg z1 + arg z2 (*):

Set     z1 =  r1 cis θ1,   z2 =  r2 cis θ2. 
Now

z1z 2  =   r1 r2 (cos θ1 + i sin θ1 )(cos θ2 + i sin θ2 ) 

=   r1 r2 [cos θ1 cos θ2 – sin θ1 sin θ 2 + i (sin θ1 cos θ2 + cos θ1 sin θ2 )] 

=   r1 r2 [cos (θ1 + θ2 ) + i sin (θ1 + θ2 )]

=   r1 r2 cis (θ1 + θ2)

So any argument of z1 plus any argument of z2 is an argument of z1z2.

On the other hand, if arg (z 1z 2 )  =  θ1 + θ2 + 2kπ, then for example, we could take
arg z1 =  θ1, and arg z 2 =  θ2 + 2kπ .



Euler’s Formula

Euler’s Formula is:
e iθθ =  cis θθ =  cos θθ + i sin θθ .

We will justify this later. But note that
e iθ . e iφ = e i (θ + φ )

corresponding to

cis θ . cis φ =  cis (θ + φ ).

In particular,

z–1 =  1r e
– θ =  1r  cis(– θ ),

z1.z2 = r1r2 e i (θ1 + θ2 ) =  r1r2 cis(θ1 + θ2 ),

z1/z2
= r1/r2

ei (θ1 – θ2 ) =  r1/r2
cis(θ1 – θ2 ).

The j - operator

We can use complex numbers to represent
geometric transformations in the plane, and
we shall develop this idea later. 

But as an example, consider the mapping 
z � f (z ) =  iz.

Here we have  | i |  =   1,  arg i =  π /2. 

So        z =  r cis θ � iz =  r cis(θ + π /2).
That is, multiplication of z by i effects a
rotation through  π /2.
This is the Engineers’ j - operator.

x

y

O

ziz

“The number you are
ringing is imaginary,”

said the operator.
“Please rotate your

telephone through 90°
and try again!”



Powers and roots

By induction, it is easy to
obtain

e iθ .e iθ . ... e iθ = e inθ ,
where there are n factors on
the left.

Equivalently, we have the
well-known de Moivre’s
Theorem:

(cis θ )n =  cis nθ .

It follows that 
z n =  r n cis nθ = r n e inθ .

(Feel free to work with either
form.)

Example

Solve z n =  1.

Since rn cis nθ = 1, we have 

r = 1, cos nθ = 1, sin nθ = 0
⇒ nθ =  2kπ. 

The distinct solutions are
given by 

z = cis ( 2kπ /n ),  k = 0, 1, ... , n – 1.

These are called nth roots of unity.  

If wn = cis (2π / n), the n roots are 

1,  wn,  wn
2, ... ,  wn

n – 1.   Note that  wn
n =  1.

The cube roots of 1 occur as the vertices of an 
equilateral triangle on the unit circle.

x

y

O
w

w

w  = 1
2

3



General n th roots

We can easily extend the above method to finding  n th roots of any  w = ρ cis φ.

For if  z = r cisθ and  zn = w, then we must have  r n = ρ, and nθ =  φ + 2kπ for integral k.

Thus r = n√ρ (the positive nth root), and θ =  φ /n + 2kπ /n,  k =  0, 1, ... , n – 1.

Example

Find all values of 4√1.

We set z =  r cisθ , and z 4 =  1  =  1.cis 0. 
Then r4 =  1 implies that r =  1,  

and 4θ =  0 + 2kπ implies that  θ =  2kπ /4 ,  k = 0, 1, ... , 3. 

Hence the four values of 4√1 are  

1.cis 0  =  1, 1.cis 2π /4 = i, 1.cis 4π /4 =  – 1, and 1.cis 6π /4 =  – i.



QUIZ 1.4QUIZ 1.4

1. In polar form,  z  =   1 + √3 i

=

2. If z =   √2 cis 5π/4, 

then z  =

3. A square root of  – i is

4. Geometrically, the powers of cis π/5
generate all the vertices of a regular 

pentagon.

(a) True ;  (b) False . 

1. 2 cis π/3.  
Express in polar form.

2. – 1 – i.  
Express in Cartesian form.

3. Either of cis π/2 or 

cis (–π/2) will do.  

Check by squaring.

4. False.  It would be true for 
powers of cis 2π/5 .

X



Regions in the 

complex plane

We have already mentioned the com-
plex plane. We look at some terms
which describe certain sets in the plane.

A neighbourhood or more specifically,
an εε - neighbourhood (epsi lon-neigh-
bourhood) of z 0 , is the set of points
satisfying  | z – z0 |  <  ε . That is, it is the set of points lying inside, but not on, the  circle
of radius  ε centred at z0. 

A point z is said to be interior to set S if there is some neighbourhood of z which just
contains points of S.  A point z is said to be exterior to set S if there is some neighbour-
hood of z which contains no points of S.  A point z is said to be a boundary point of set S
if every neighbourhood of z contains points in S and points not in S.  All the boundary
points together make up the boundary of S. Notice that a boundary point of S need not be
an actual point of S.

Exterior

Interior

Boundary

Exterior point

Interior point

Boundary point



Domains and regions

An open, connected set is called a domain. A connected set is called a region.
A set S is bounded if every point of S lies inside some circle |z| = R; otherwise it is unbounded .

Examples

The annulus  1 < | z | < 2 and the 
disk | z | < 1 are domains. 

The annulus  1 ≤ | z | < 2 and the
disk | z | ≤ 1 are regions. 

Examples

The annulus 1 <  | z |  <  2 is bounded 
(it lies inside the circle | z |  =  3). 
The straight line  {z = x + i y | y = 0}
is unbounded.

O 1 2

O 1 2

O 1

O 1

DOMAINS

REGIONS



Points of accumulation

We say that point z 0 is an accumulation point of a set S, if each neighbourhood of z 0
contains at least one point of S distinct from z 0.

This is a more difficult concept, and is obviously associated with a limiting process.
Thus we would expect to be able to find a sequence of points of S lying closer and closer
to z 0.

Lemma S is closed ⇒⇒ S contains all its points of accumulation.

Proof (⇒⇒ ) Let S be closed. Then S contains all its interior and boundary points. A point of
accumulation of S can not be an exterior point (see the definition of exterior point). Hence
S contains all its points of accumulation.

(⇐⇐  ) Suppose now that S contains all its points of accumulation. Does S contain all its
boundary points?  Let z 0 be a boundary point of S not in S.  By definition of boundary
point, each neighbourhood of z 0 contains a point of S, so z 0 is a point of accumulation of S–.
So z 0 lies in S and S contains all its boundary points.  Hence S is closed.



QUIZ 1.5QUIZ 1.5

1. The set 2  ≤ | z |  <  3 is open / closed / 
neither?

2. The set | z |  <  3 is a domain because it is 

(a) open ;  (b) connected     ;  

(c) both of these .

3. The point z =  1 is an accumulation 
point of  | z |  <  1.

(a) True      ;  (b) False .

4. A discrete point set can have a point of 
accumulation.

(a) True ;  (b) False .

1. Neither.  The set contains 
some boundary points.

2. (c) See the 
definition of domain.

3. (a) Every neighbourhood of 

1 contains points of the set.

4. (a) E.g., 0 is an 
accumulation point of  {1/n}.
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