1. COMPLEX NUMBERS

A short history

The history of the complex numbers is very interesting. By the 16th Century, although no-one understood exactly what a complex number was, it was found that complex numbers were a useful tool for solving problems. Later, mathematicians tried to understand the complex numbers. This led in turn to investigations of the real numbers, the rational numbers, the integers and finally the natural numbers. So historically there was a reverse development: the more complicated system was found to be useful early on, and the study of the simplest systems were left till later.

Leibniz (1702) described complex numbers as 'that wonderful creation of an ideal world, almost an amphibian between things that are and things that are not'.

Definition

Complex numbers are defined as ordered pairs $z=(x, y)$ of real numbers x and y. We shall define addition and multiplication of these numbers shortly.

We identify the pairs $(x, 0)$ with the real numbers x. This means that the real numbers can be thought of as a subset of the complex numbers.

Complex numbers of the form $(0, y)$ are said to be pure imaginary numbers. The numbers x and y are now called the real and imaginary parts of z respectively, and we write $x=\boldsymbol{\operatorname { R e }} z, y=\mathbf{I m} z$.

Equality

Two complex numbers are equal if they have the same real and imaginary parts. Thus

$$
\begin{array}{r}
\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \text { if and only if } \\
x_{1}=x_{2}, y_{1}=y_{2} .
\end{array}
$$

Sum and product

The sum $z_{1}+z_{2}$ and product $z_{1} z_{2}$ of
$z_{1}=x_{1}+y_{1}$ and $z_{2}=x_{2}+y_{2}$ are defined by:

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right), \\
\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right) .
\end{gathered}
$$

This last definition looks pretty weird, but we shall shortly see the reason for it.

Understanding the operations

Comments

With these definitions of addition and multiplication, we have

$$
(x, y)=(x, 0)+(0,1)(y, 0)
$$

The set of complex numbers of the form $(x, 0)$ act just like the real numbers \mathbf{R}.
Further, setting $i=(0,1)$ gives $z=(x, y)$ $=x+i y$, and we have
$i^{2}=(0,1) \cdot(0,1)=(-1,0)$, that is, $i^{2}=-1$.
Addition and multiplication can now be rewritten as the more usual:
$\left(x_{1}+i y_{1}\right)+\left(x_{2}+i y_{2}\right)=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)$,
$\left(x_{1}+i y_{1}\right) \cdot\left(x_{2}+i y_{2}\right)=$

$$
\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(y_{1} x_{2}+x_{1} y_{2}\right)
$$

1. Why did we not just start here? Notice that our derivation of i is firmly based on the real numbers. There is no 'magic' about $\sqrt{ }(-1)$, contrary to the use of the historical word 'imaginary'.
2. We can now perform complex operations by treating the terms as real, and substituting $i^{2}=-1$.

Example

$(2+3 i)+(4+5 i)=(2+4)+(3+5) i=6+8 i$, and

$$
(2+3 i) \cdot(4+5 i)=(2.4+3 i .5 i)+(2.5 i+3.4 i)
$$

$$
=(8-15)+(10+12) i=-7+22 i .
$$

QUIZ 1.1A

1. The sum of $3+i$ and $7+5 i$ is

2. The product of $3+i$ and $7+5 i$ is

3. The product of i and $-i$ is

4. The product of $1+2 i$ and $1-2 i$ is
\square

QUIZ 1.1B

With these definitions of addition and multiplication, we have $\{1\}$. The set of complex numbers of the form $\{2\}$ act just like the real numbers R. Further, setting $\{3$ \} gives $z=(x, y)=x+i y$, and we have $\{4\}$, that is, $i^{2}=-1$. Addition and multiplication can now be rewritten as the more usual:

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
\left(x_{1}+i y_{1}\right) \cdot\left(x_{2}+i y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(y_{1} x_{2}+x_{1} y_{2}\right) .
\end{gathered}
$$

Match the above missing items $1,2,3,4$ with the selections
(a) $i=(0,1)$, (b) $(x, y)=(x, 0)+(0,1)(y, 0)$,
(c) $i^{2}=(0,1) \cdot(0,1)=(-1,0)$, (d) $(x, 0)$.

1. \square 2. \square 3. \square 4. \square

Algebraic properties

The complex numbers behave in much the same way as the real numbers.
In particular they form a field.
Some of the laws satisfied are:
The Commutative Laws:

$$
z_{1}+z_{2}=z_{2}+z_{1} ; \quad z_{1} z_{2}=z_{2} z_{1}
$$

The Associative Laws:

$$
\begin{aligned}
\left(z_{1}+z_{2}\right)+z_{3} & =z_{1}+\left(z_{2}+z_{3}\right) ; \\
\left(z_{1} z_{2}\right) z_{3} & =z_{1}\left(z_{2} z_{3}\right) ;
\end{aligned}
$$

The Distributive Law:

$$
z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3} .
$$

These are easily proved by writing the $z s$ in the form $x+i y$ and using the corresponding properties of the real numbers.

Other field axioms

We now use the idea of inverse to define division of complex numbers in the following way:

$$
z_{1} / z_{2}=z_{1} \cdot z_{2}^{-1} \quad\left(z_{2} \neq 0\right) .
$$

Try writing this out in terms of the real and imaginary parts! Later we shall give an easier way of dividing complex numbers. Clearly division by zero is not allowed, as $z_{2}{ }^{-1}$ is undefined when $z_{2}=0$.

The expressions below follow from this definition:

$$
\frac{1}{z_{1} z_{2}}=\frac{1}{z_{1}} \cdot \frac{1}{z_{2}}, z_{1}+\frac{z_{2}}{z_{3}}=\frac{z_{1-}}{z_{3}}+\frac{z_{2-}}{z_{3}}, \frac{z_{1}}{z_{1} z_{2-}}=\frac{z_{1-}}{z_{3}-} \frac{z_{2-}}{z_{3}} z_{4}
$$

As mentioned earlier, complex numbers (like the reals) form a field, \mathbf{C}. However, it is not possible to order \mathbf{C}. Thus expressions like $z>0, z_{1}<z_{2}$ are meaningless unless the complex numbers are real.

Example

$$
\frac{1}{2-3 i} \cdot \frac{1}{1+i}=\frac{1}{5-i} \cdot \frac{5+i}{5+i}=\frac{5+i}{26}=\frac{5}{26}+\frac{i}{26}
$$

QUIZ 1.2

1. The integers form a field under addition and multiplication.
(a) True \square; (b) False \square.
2. $3+2 i>2+i$
(a) True \square; (b) False \square;
(c) Neither \square
3. $z_{1}\left(z_{2} z_{3}\right)=\left(z_{1} z_{2}\right) z_{3}$ is the
\square law.
4. $2 /(1+i)$ is another expression for $1-i$.
(a) True \square; (b) False \square

Cartesian coordinates

We set up the natural correspondence $z=x+i y \leftrightarrow(x, y)$ between the complex number z and the point (x, y) in the cartesian plane. Each complex number corresponds to exactly one point in the plane, and conversely. For example, $1+2 i$ is represented by the point $(1,2)$. Notice how this corresponds to our original 'ordered pair' definition of a complex number. We can think of the complex
 number z either as the point (x, y) or as the vector from the origin to this point.

The plane of such representative points is called the Argand diagram, or the complex plane or the z - plane.

The x-axis is called the real axis and the y-axis is called the imaginary axis.

Sum and difference

We now have an immediate geometric interpretation of the sum and difference of two complex numbers (below).

Notice the direction of the arrow representing $z_{1}-z_{2}$.

Modulus and distance

The modulus or absolute value of a complex number $z=$ $x+i y$ is defined to be $|z|=\sqrt{x^{2}+y^{2}}$. When $y=0, z$ is real, and we have the usual absolute value of a real number.

The (real) number $|z|$ denotes the length of the vector representing z, or the distance of the point (x, y) from the origin O. Even though $z_{1}<z_{2}$ is meaningless, note that $\left|z_{1}\right|<\left|z_{2}\right|$ is a valid statement, meaning z_{1} is closer to O than z_{2}.
We can extend this idea to see that

$$
\left|z_{1}-z_{2}\right|=\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}}
$$

is the distance between the points representing z_{1} and z_{2}.
Example Find the locus of points z satisfying $|z-i|=3$. We are looking at points z which are distant 3 from the fixed point i. That is, a circle of radius 3 and centre $i=(0,1)$.
If we express $z=x+i y$, then $|z-i|=3$ becomes the equation of this circle:

$$
\sqrt{x^{2}+(y-1)^{2}}=3, \text { or } x^{2}+(y-1)^{2}=9 .
$$

Modulus and conjugate

From the definition of $|z|$, we have

$$
|z|^{2}=(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}
$$

from which it follows that

$$
\begin{aligned}
& |z| \geq|\operatorname{Re} z| \geq \operatorname{Re} z, \text { and } \\
& |z| \geq|\operatorname{Im} z| \geq \operatorname{Im} z .
\end{aligned}
$$

Argand

Jean Robert Argand (1768-1822) was a Swiss bookkeeper. In 1806 he published a paper associating the complex numbers with points in the complex plane. The plane of complex numbers is now often called the Argand plane.

The complex conjugate or conjugate of $z=x+i y$ is the number $\bar{z}=x-i y$.

The number \bar{z} is represented in the complex plane by the point ($\mathrm{x},-\mathrm{y}$) - the reflection in the x-axis of the point representing z.

We observe that for all z,

$$
\overline{\bar{z}}=z, \text { and }|\bar{z}|=|z| .
$$

More properties of the conjugate

The following properties are easy to establish from the definitions:

$$
\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}, \overline{z_{1} \cdot z_{2}}=\overline{z_{1}} \cdot \bar{z}_{2}, \overline{z_{1} / z_{2}}=\overline{z_{1}} / \bar{z}_{2}
$$

We also have

$$
\begin{aligned}
& \operatorname{Re} z=\frac{1}{2}(z+\bar{z}), \\
& \operatorname{Im} z=\frac{1}{2}(z-\bar{z}) .
\end{aligned}
$$

Finally,

$$
z \cdot \bar{z}=|z|^{2}=x^{2}+y^{2}
$$

so for $z_{2} \neq 0$,

$$
\frac{z_{1}}{z_{2}}=\frac{z_{1} \bar{z}_{2}}{z_{2} \cdot \bar{z}_{2}}=\frac{z_{1} \bar{z}_{2}}{\left|z_{2}\right|^{2}}
$$

Wessel

Casper Wessel (1745-1818) was a Norwegian surveyor. He published a paper in 1797 linking complex numbers to points in the plane, but the paper remained unnoticed for 100 years!

This gives us a nice way to find the quotient of two complex numbers.

Example

$$
\frac{1+8 i}{2+i}=\frac{(1+8 i)(2-i)}{(2+i)(2-i)}=\frac{10+15 i}{5}=2+3 i
$$

The triangle inequality

The relation $z \cdot \bar{z}=|z|^{2}$ quickly gives
$\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| .\left|z_{2}\right|, \quad\left|z_{1}\right| z_{2}\left|=\left|z_{1}\right| /\left|z_{2}\right| . \quad\right.$ Proof of the inequality
$\left|z_{1} z_{2}\right|=\left|z_{1}\right| .\left|z_{2}\right|, \quad\left|z_{1}\right| z_{2}\left|=\left|z_{1}\right| /\left|z_{2}\right|\right.$.
It is also not too hard to derive the

Triangle Inequality:

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
$$

(Proof at right)

It is easy to extend this to larger finite sums:

$$
\begin{aligned}
\left|z_{1}+z_{2}\right|^{2} & =\left(z_{1}+z_{2}\right) \overline{\left(z_{1}+z_{2}\right)} \\
& =\left(z_{1}+z_{2}\right)\left(\bar{z}_{1}+\bar{z}_{2}\right) \\
& =z_{1} \bar{z}_{1}+z_{1} \bar{z}_{2}+z_{2} \bar{z}_{1}+z_{2} \bar{z}_{2} \\
& \leq\left|z_{1}\right|^{2}+2\left|z_{1}\right| .\left|z_{2}\right|+\left|z_{1}\right|^{2}
\end{aligned}
$$

$$
\text { since } \begin{aligned}
z_{1} \bar{z}_{2}+z_{2} \bar{z}_{1} & =2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right) \leq\left|z_{1} \bar{z}_{2}\right| \\
& =\left|z_{1} z_{2}\right|=\left|z_{1}\right| .\left|z_{2}\right|
\end{aligned}
$$

$$
=\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2}
$$

$$
\begin{aligned}
\left|z_{1}+z_{2}+z_{3}\right| & \leq\left|z_{1}+z_{2}\right|+\left|z_{3}\right| \\
& \leq\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}\right|
\end{aligned}
$$

More on the triangle inequality

The triangle inequality becomes clear when seen geometrically, as in the adjacent figure. It just says that the length of any side of a triangle is not more than the sum of the lengths of the remaining two sides.

Another useful result is the ModDiff Inequality:

$$
\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right|
$$

We can think of this as providing a lower bound for $\left|z_{1}+z_{2}\right|$.
Proof $\left|z_{1}\right|=\left|\left(z_{1}+z_{2}\right)+\left(-z_{2}\right)\right| \leq\left|z_{1}+z_{2}\right|+\left|-z_{2}\right|$
so

$$
\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}+z_{2}\right|
$$

Similarly,

$$
\left|z_{2}\right|-\left|z_{1}\right| \leq\left|z_{1}+z_{2}\right|,
$$

giving the required result.

QUIZ 1.3A

1. $|3+4 i|=$ \square
2. If $z=\bar{z}$, then z is
(a) Real \downarrow; (b) Imaginary \square;
(c) Neither

(a) True $\sqrt{\checkmark}$; (b) False \square.
3. $\left|z_{1}+z_{2}\right| ?\left|z_{1}\right|+\left|z_{2}\right|$.
(a) $\geq \boxed{\downarrow}$; (b) $\leq \square$.

QUIZ 1.3B

The Triangle Inequality is $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
Proof: $\left|z_{1}+z_{2}\right|^{2}=\left(z_{1}+z_{2}\right)\left(\overline{z_{1}+z_{2}}\right)=\{1\}$

$$
=z_{1} \bar{z}_{1}+z_{1} \bar{z}_{2}+z_{2} \bar{z}_{1}+z_{2} \bar{z}_{2} \leq\{2\}
$$

(since $z_{1} \bar{z}_{2}+z_{2} \bar{z}_{1}=2\{3\} \leq 2\left|z_{1} \bar{z}_{2}\right|=2\left|z_{1} z_{2}\right|=\{4\}$.)

$$
=\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2}
$$

Match the above boxes 1, 2, 3, 4 with the selections
(a) $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$, (b) $2\left|z_{1}\right| .\left|z_{2}\right|$,
(c) $\left|z_{1}\right|^{2}+2\left|z_{1}\right| .\left|z_{2}\right|+\left|z_{2}\right|^{2}$, (d) $\left(z_{1}+z_{2}\right)\left(\bar{z}_{1}+\bar{z}_{2}\right)$

1. \square 2. 3. 4.

Polar Coordinates

We say that $z=(x, y)$ has polar coordinates (r, θ) when $x=r \cos \theta, y=r \sin \theta$. We write

$$
z=r \cos \theta+i r \sin \theta=r \operatorname{cis} \theta .
$$

Example

$$
1+\sqrt{ } 3 i=2(\cos \pi / 3+i \sin \pi / 3) .
$$

Note that $r=|z|$. We write $\theta=\boldsymbol{\operatorname { a r g }} z-$ the $\operatorname{argument}$ of z. The argument is always expressed in radians. We can find θ from the relationship $\tan \theta=y / x$.

The angle θ is not unique: thus $\theta \pm 2 k \pi$ is equally valid.
We use $\operatorname{Arg} z$ to denote the value of $\arg z$ satisfying $-\pi<\arg z \leq \pi$.
This is the principal value of the argument.
If $z=0, \arg z$ is undefined. We adopt the convention that if z is expressed in polar form, then $z \neq 0$.

Using polar coordinates

We begin with a natural extension: $z-z_{0}=\operatorname{cis} \theta$.
Here, $r=\left|z-z_{0}\right|$, and $\theta=\arg \left(z-z_{0}\right)$.
The adjacent figure illustrates the situation.
The polar form is important because it gives a very simple method of multiplying and dividing complex numbers. This is because

$$
\begin{equation*}
\arg \left(z_{1} \cdot z_{2}\right)=\arg z_{1}+\arg z_{2} \tag{*}
\end{equation*}
$$

We shall prove this shortly, but notice that this relation may fail for the principal value 'Arg'.

Example

Set $z_{1}=-1, z_{2}=i$.
Then $\operatorname{Arg}\left(z_{1} \cdot z_{2}\right)=\operatorname{Arg}(-i)=-\pi / 2$, while $\operatorname{Arg} z_{1}+\operatorname{Arg} z_{2}=+\pi+\pi / 2=3 \pi / 2$.

Proof of the Argument Identity

We now prove the identity $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2} \quad(*)$:
Set $z_{1}=r_{1} \operatorname{cis} \theta_{1}, \quad z_{2}=r_{2} \operatorname{cis} \theta_{2}$.
Now

$$
\begin{aligned}
z_{1} z_{2} & =r_{1} r_{2}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& =r_{1} r_{2}\left[\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right)\right] \\
& =r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \\
& =r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

So any argument of z_{1} plus any argument of z_{2} is an argument of $z_{1} z_{2}$.
On the other hand, if $\arg \left(z_{1} z_{2}\right)=\theta_{1}+\theta_{2}+2 k \pi$, then for example, we could take $\arg z_{1}=\theta_{1}$, and $\arg z_{2}=\theta_{2}+2 k \pi$.

Euler's Formula

Euler's Formula is:

$$
e^{i \theta}=\operatorname{cis} \theta=\cos \theta+i \sin \theta
$$

We will justify this later. But note that

$$
e^{i \theta} \cdot e^{i \phi}=e^{i(\theta+\phi)}
$$

corresponding to

$$
\operatorname{cis} \theta \cdot \operatorname{cis} \phi=\operatorname{cis}(\theta+\phi) .
$$

In particular,

$$
z^{-1}=\frac{1}{r} e^{-\theta}=\frac{1}{r} \operatorname{cis}(-\theta),
$$

$z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$,
$z_{1 / z_{2}}=r_{1 /} r_{2} e^{i\left(\theta_{1}-\theta_{2}\right)}=r_{1 / r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)$.

The j-operator

We can use complex numbers to represent geometric transformations in the plane, and we shall develop this idea later.

But as an example, consider the mapping

$$
z \rightarrow f(z)=i z
$$

Here we have $|i|=1, \arg i=\pi / 2$.
So $\quad z=r \operatorname{cis} \theta \rightarrow i z=r \operatorname{cis}(\theta+\pi / 2)$.
That is, multiplication of z by i effects a rotation through $\pi / 2$.
This is the Engineers' \boldsymbol{j} - operator.
"The number you are ringing is imaginary," said the operator.
'"Please rotate your telephone through 90° and try again!"

Powers and roots

By induction, it is easy to obtain

$$
e^{i \theta} . e^{i \theta} \ldots e^{i \theta}=e^{i n \theta}
$$

where there are n factors on the left.

Equivalently, we have the well-known de Moivre's Theorem:

$$
(\operatorname{cis} \theta)^{n}=\operatorname{cis} n \theta .
$$

It follows that

$$
z^{n}=r^{n} \operatorname{cis} n \theta=r^{n} e^{i n \theta}
$$

(Feel free to work with either form.)

Example

Solve $z^{n}=1$.
Since r^{n} cis $n \theta=1$, we have
$r=1, \cos n \theta=1, \sin n \theta=0$

$$
\Rightarrow n \theta=2 k \pi .
$$

The distinct solutions are given by

$$
z=\operatorname{cis}(2 k \pi / n), k=0,1, \ldots, n-1
$$

These are called \boldsymbol{n} th roots of unity.
If $w_{n}=\operatorname{cis}(2 \pi / n)$, the n roots are

$$
1, w_{n}, w_{n}^{2}, \ldots, w_{n}^{n-1} . \text { Note that } w_{n}^{n}=1
$$

The cube roots of 1 occur as the vertices of an equilateral triangle on the unit circle.

General n th roots

We can easily extend the above method to finding nth roots of any $w=\rho$ cis ϕ.
For if $z=r \operatorname{cis} \theta$ and $z^{n}=w$, then we must have $r^{n}=\rho$, and $n \theta=\phi+2 k \pi$ for integral k.
Thus $r=n \sqrt{ } \rho$ (the positive nth root), and $\theta=\phi / n+2 k \pi / n, k=0,1, \ldots, n-1$.

Example

Find all values of $\sqrt[4]{ } 1$.
We set $z=r \operatorname{cis} \theta$, and $z^{4}=1=1 . \operatorname{cis} 0$.
Then $\quad r^{4}=1$ implies that $r=1$,
and $\quad 4 \theta=0+2 k \pi$ implies that $\theta=2 k \pi / 4, k=0,1, \ldots, 3$.
Hence the four values of $\sqrt[4]{ } 1$ are
$1 . \operatorname{cis} 0=1, \quad 1 . \operatorname{cis} 2 \pi / 4=i, \quad 1 . \operatorname{cis} 4 \pi / 4=-1$, and $1 . \operatorname{cis} 6 \pi / 4=-i$.

QUIZ 1.4

1. In polar form, $z=1+\sqrt{3} i$

2. If $z=\sqrt{ } 2 \operatorname{cis}{ }^{5 \pi} / 4$,

$$
\text { then } z=\square
$$

3. A square root of $-i$ is \square
4. Geometrically, the powers of cis $\pi / 5$ generate all the vertices of a regular pentagon.
(a) True $\quad \boxed{\checkmark}$; (b) False \square

Regions in the complex plane

We have already mentioned the complex plane. We look at some terms which describe certain sets in the plane.

A neighbourhood or more specifically, an $\boldsymbol{\varepsilon}$-neighbourhood (epsilon-neighbourhood) of z_{0}, is the set of points

 satisfying $\left|z-z_{0}\right|<\varepsilon$. That is, it is the set of points lying inside, but not on, the circle of radius ε centred at z_{0}.
A point z is said to be interior to set S if there is some neighbourhood of z which just contains points of S. A point z is said to be exterior to set S if there is some neighbourhood of z which contains no points of S. A point z is said to be a boundary point of set S if every neighbourhood of z contains points in S and points not in S. All the boundary points together make up the boundary of S. Notice that a boundary point of S need not be an actual point of S.

Domains and regions

An open, connected set is called a domain. A connected set is called a region.
A set S is bounded if every point of S lies inside some circle $|z|=R$; otherwise it is unbounded .

Examples

The annulus $1<|z|<2$ and the disk $|z|<1$ are domains.
The annulus $1 \leq|z|<2$ and the $\operatorname{disk}|z| \leq 1$ are regions.

Examples

The annulus $1<|z|<2$ is bounded (it lies inside the circle $|z|=3$).
The straight line $\{z=x+i y \mid y=0\}$ is unbounded.

DOMAINS

REGIONS

Points of accumulation

We say that point z_{0} is an accumulation point of a set S, if each neighbourhood of z_{0} contains at least one point of S distinct from z_{0}.

This is a more difficult concept, and is obviously associated with a limiting process. Thus we would expect to be able to find a sequence of points of S lying closer and closer to z_{0}.

Lemma S is closed $\Rightarrow S$ contains all its points of accumulation.

$\operatorname{Proof}(\Rightarrow)$ Let S be closed. Then S contains all its interior and boundary points. A point of accumulation of S can not be an exterior point (see the definition of exterior point). Hence S contains all its points of accumulation.
(\Leftarrow) Suppose now that S contains all its points of accumulation. Does S contain all its boundary points? Let z_{0} be a boundary point of S not in S. By definition of boundary point, each neighbourhood of z_{0} contains a point of S, so z_{0} is a point of accumulation of \bar{S}. So z_{0} lies in S and S contains all its boundary points. Hence S is closed.

QUIZ 1.5

1. The set $2 \leq|z|<3$ is open / closed / neither? \square
2. The set $|z|<3$ is a domain because it is
(a) open \square ; (b) connected \square ;
(c) both of these \square
3. The point $z=1$ is an accumulation point of $|z|<1$.
(a) True \square ; (b) False \checkmark
4. A discrete point set can have a point of accumulation.
(a) True $\boxed{\checkmark}$; (b) False \square.
