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Functions of a complex variable

Let D be a subset of C.  A function f : D → C is a rule that associates with each z in D
a unique complex number w. We write  w = f(z) .

Notes

1. The set D of numbers that are mapped is called the domain of  f. Notice that we now
have a double use of this word. Where the domain is unspecified, we assume it to be the
largest  subset of C for which f(z) is defined.

2. The set of image elements {w | w = f(z)} is called the  range or  image of the function.

3. The above definition specifies a unique image for each z ∈ D.  Later we shall extend
this definition to include multivalued functions.
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Examples of functions

In practice, this expression in terms of
real and imaginary parts may be easier
said than done!  In theory, it allows us to
deduce properties of complex functions
from our knowledge of the real numbers.

Example 1

f1(z ) = z 2 + iz – 3. 
The domain is C. 

f2(z ) = 1/(1 + z 2).

Here the domain is C \ {– i}.

Example 2

f 3(z )  =  | z |,

f4(z )  =  Re z = x,

f5(z )  =  Im z  =  y.

Example 3

f6(z ) = z 2 .

Here   u + iv = (x + iy)2 = (x2 – y2) + 2ixy, 

so 
u = (x2 – y 2), v = 2xy.

We can break  w = f (z) into real and imaginary parts. Thus if  w = u + iv, z = x + iy,  then

w = f (z) = u(x, y) + iv(x, y).

If f (z ) only assumes real values, 
f is real-valued.



Mappings

A real function  y = f(x)  can be represented geometrically by a graph: the set of points
{(x, y) | y = f(x)}. To represent the complex function  w = f(z)  geometrically, in general
we need four dimensions or two planes: a plane for the domain, and a plane for the range.
For simple functions, we can use the same plane twice.

Example 1

w = f(z) =  z + 2.

This is a translation: each point  z is translated through
2 to the point  z + 2.

Example 2

w = f(z)  =  z–. 

This is a reflection in the x-axis: each point z = x + iy
(or (x, y))  is mapped to the point  z– = x – iy (or (x, –y)).

xO

y
z w = z + 2

xO

y
z



QUIZQUIZ 2.12.1

1. The domain of  f =  f (z) is the set of image 
elements.
(a) True ;   (b) False .

2. If  z = x + iy,  then the function  f ( z ) =  y is 
real valued.
(a) True ;  (b) False         .

3. Describe geometrically the mapping   
f ( z ) =  – z.

4. Describe geometrically the mapping  
f ( z ) =  2z.

1. False: the images lie in 
the range.

2. True: y is always real.

3. This map is a reflection 
in the origin.

4. This map has centre O
and scale factor 2.
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Mapping curves and regions

We shall be mapping curves and regions rather than just points.

Example

Find the image of the circle 
x2 + y 2 =  c 2 (c > 0) 

under   w =  f ( z ) =  √(x2 + y 2 ) – iy .

Let us set  w  =  u + iv. Then each point
(x, y)  on the circle  x2 + y 2 = c 2 maps
to   (u, v) = (c, –y), where | y |  ≤ c.

Thus the image of this circle is the line segment  u = c,  – c  ≤ v  ≤ c in the uv-plane.
The domain of  f is the z-plane; the range of f is a quadrant of the w -plane.

Notice that z =  (x, y) and  – z– =  (–x, y) map to the same point  w.
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Limits

All work on functions of two variables now carries over directly.  A minor difference is
that because we are dealing with complex numbers, the length or norm of a vector repre-
sented by  w becomes the modulus | w |  of  w.

Thus the definition of limit becomes:

lim z → z 0
f ( z ) = w0 means 

for all  ε >  0, there exists  δ >  0 : for all  z , 0  <  | z – z 0 |  <  δ ⇒ | f ( z ) – w0 |  <  ε.

Thus every  z in the left disc has an image
in the right disk. We may not obtain the
whole of the right disc; for example,
consider the image of f ( z ) =  constant  =
w0; we obtain just the central point of the

second disk.
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A limit theorem  ( I )

Theorem 2.1 If w = f(z)  = u + iv,   z  = x  + iy,  z 0 = x0 + iy0, then 

lim f ( z ) = u0 + iv0 ⇔  lim u(x, y) = u0 and  lim v(x, y) = v0 .
z → z0 x → x0 x → x0

y → y0 y → y0

In brief, this theorem says: lim(u + iv)  =  lim u + i lim v.

Proof (⇒⇒) Let us suppose that   
lim f ( z ) = u0 + iv0z → z0

By definition, given ε, there exists δ > 0 :

0  <  | x – x0 + i(y – y0) |  <  δ

⇒ | u (x, y) – u0 + i(v(x, y) – v0 )| < ε.

We deduce that

0   <   | x – x0 |  <  δ /2,  0  <  | y – y0 |  <  δ /2
⇒ | u (x, y ) – u0 |  <  ε, | v(x, y) – v0 |  <  ε.

This completes this part of the proof.



A limit theorem  ( II )

Theorem 2.1 If w = f(z)  = u + iv,   z  = x  + iy,  z 0 = x0 + iy0, then 

lim f ( z ) = u0 + iv0 ⇔  lim u(x, y) = u0 and  lim v(x, y) = v0 .
z → z0 x → x0 x → x0

y → y0 y → y0

(⇐⇐ ) Now let us suppose that  
lim u(x, y) = u0 and  lim v(x, y) = v0 .

x → x0 x → x0
y → y0 y → y0

Then there exist  δ1 >  0,  δ2 >  0  such that

0  <  | x – x0 |  <  δ1, 0  <  | y – y0 |  <  δ1 ⇒ | u(x, y) – u0 |  <  ε/2,

0  <  | x – x0 |  <  δ2, 0  <  | y – y0 |  <  δ2 ⇒ | v(x, y) – v0 |  <   ε/2.

Choose  δ =  min (δ1, δ 2).  Then using the given limits,

0  <  | (x – x0) + i(y – y0) |  <  δ ⇒

| (u (x, y) + iv(x, y)) – (u0 + iv0) |  ≤ | u (x, y) – u0 | + | i | | v(x, y) – v0 | <  ε/2 + ε/2 < ε,

as required. 



More Limit Theorems

Our previous theorem quickly leads to the well-known and useful Limit Theorems.

We use an easy to remember abbreviated notation.

Theorem 2.2. (Limit Theorems) If  lim f, lim g exist, then

lim ( f  ± g )  =  lim f ± lim g,

lim ( f . g )  =  lim f . lim g,

lim ( f / g ) = lim f / lim g ( lim g  ≠ 0).

Proof (a) Set f  =  u + iv,  lim f  =  u0 + iv0,  g =  U + iV,  lim g = U0 + iV0. 

Now     lim ( f + g)  =  lim (u + U  +  i(v + V )) (substitute and rearrange)

=  lim (u + U )  +  i lim(v + V ) (Thm 2.1)

=  u0 + U0 +  i(v0 + V0) (put in the limits)

=  (u0 + iv0)  +  (U0 + iV0 ) (rearrange)

=  lim f +  lim g.

The other proofs are similar.



QUIZ 2:2AQUIZ 2:2A

1. Geometrically, the image of  f ( z ) = 2 + i is a

2. Geometrically, mapping  f ( z ) = z– maps the 

square with vertices  (±1, ± i)  onto itself.

(a) True ;   (b) False .

3. If  u + iv tends to  u0 + iv0,  then we must have 

u → u0. 

(a) True ;   (b) False .

4. If  f ( z )  =  2 + i and  g ( z )  =  2 – i then 

( f .g)(z)  =  

1. point: every z
maps to 2 + i.

2. True: reflect in 
x-axis.

3. True by 
Theorem 2.1.

4. Multiplying 
gives 5.
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QUIZ 2:2BQUIZ 2:2B
Theorem 2.1 lim f ( z ) = u0 + iv0 ⇔  lim u(x, y) = u0 and  lim v(x, y) = v0 .

z → z0 x → x0 x → x0
y → y0 y → y0

Proof (⇒) Let us suppose that { 1 }. By definition, given ε, there exists δ > 0 :

0  <  { 2 } ⇒ | u (x, y) – u0 + i(v(x, y) – v0 ) | < ε.

We deduce that

{ 3 },    0  <  | y – y0 |  <  δ /2
⇒ | u (x, y ) – u0 |  <  ε, { 4 }.

This completes this part of the proof.

Match the above numbers  1, 2, 3, 4 with the selections:

(a) | v(x, y) – v0 |  <  ε (b) | (x – x0) + i(y – y0) |  <  δ

(c) lim z → z0
f ( z ) = u0 + iv0 (d) 0  <  | x – x0 |  <  δ /2

1. 2. 3. 4.

1  (c)

2  (b)

3  (d)

4  (a)
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Continuity

Definition Function  f is said to be continuous at  z0 if  f satisfies the following three

conditions.

(a) f ( z 0 ) exists ; (b) lim z → z0
f ( z ) exists ;  (c) lim z → z0

f ( z ) =  f ( z 0 ) .

Notes

1. Just writing statement (c) assumes the truth of (a) and (b).

2. Expressing (c) in terms of the limit definition, we obtain: 

| z – z0 |  <  δ ⇒ | f ( z ) –  f ( z 0 ) |  <  ε.

This is slightly different from the usual definition of limit, in that we allow the

possibility  z =  z0 (omitting  0 < | z – z0 | ... ).

Function  f = f ( z ) is said to be continuous in a region if it is continuous at each point of

the region.



Propertiers of continuous functions

The sum f + g, difference f – g, product  f . g and quotient f / g of two continuous

functions is continuous at a point  z  =  z 0, with the proviso that in the last case  g(z 0) ≠ 0.

These results follow directly from the Limit Theorems 2.2. 

Examples

1. Polynomial functions 

The polynomial function P(z) =  Σ ai z i  is continuous for all  z since it is constructed

as sums and products of the continuous constant functions (ai ) and the continuous

function  f ( z )  = z .

2. Rational functions 

The rational function  P(z) / Q(z) given by the quotient of two continuous polynomi-
al functions  P(z) , Q(z) is continuous for all  z : Q(z)  ≠ 0.



Composition of continuous functions

We can also compose complex functions  f, g to obtain the new function  f o g defined by

( f o g )(z) = f ( g ( z ) ) . If  f, g are continuous, will  f o g be continuous also?

Theorem 2.3 The composite function  f o g of two continuous functions  f, g is continuous.

Alternatively, a continuous function of a continuous function is a continuous function. 

Formally, the proof of this theorem is exactly as for the real case, and is omitted here.

By Theorem 2.1, f ( z ) =  u + iv is continuous ⇔ u(x, y), v(x, y) are continuous. Thus:

Definition We say  f is bounded in region R if  | f ( z ) |  ≤ M  for all  z ∈ R.

If f is continuous in R, then  f is bounded because of the corresponding properties of u, v.

Show this!

Example f ( z ) = sin (z 2) is continuous for all z.

Example f ( z ) =  e x y + i sin(x2 – 2yx3)  is continuous for all  z
(since the real and imaginary parts are continuous).



Quiz 2.3Quiz 2.3

1. If  f (z 0)  exists, then function  f must be 

continuous at  z = z 0 .

(a) True ;  (b) False .

2. If  lim z → z 0
f ( z ) exists, then function  

f must be continuous at  z = z 0.

(a) True ;  (b) False .

3. The function  f ( z ) = sin (1/z )  is     

continuous everywhere.

(a) True ;  (b) False .

4. The function  f ( z ) = cos (z3)  is continuous everywhere.

(a) True ;  (b) False .

1. (b) False. We must have 
lim z → z 0

f ( z ) =  f ( z 0 ) .

2. (b) False.  We must have 
lim z → z 0

f ( z ) =  f ( z 0 ) .

3. (b)  False.  
Discontinuous at  z =  0. 

4. (a) True.  Composite of 
two continuous functions.
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The derivative

Formally, the definition of the derivative  df/dz =  f ′( z ) for functions of a complex

variable is the same as for real functions.

Let  f be a function whose domain contains a neighbourhood of point  z 0. Then 

f ′( z 0 )  = lim    f ( z ) –  f ( z 0 )   
––––––––––––

z → z 0
z –  z 0

if the limit exists.  In this case the function  f is said to be differentiable at  z 0.

It is sometimes preferable to use the alternative form of the derivative obtained by setting

z =  z 0 +  ∆z :

f ′( z 0 )  = lim    f ( z 0 +  ∆ z ) –  f ( z 0 )
–––––––––––––––––– 

∆z → 0 ∆ z

Note Since  z 0  lies in an (open) neighbourhood of the domain of f, f ( z 0 +  ∆ z ) is

defined if  ∆ z is small.



Examples of the derivative

We can evaluate simple derivatives by using the basic definition. 

The usual differentiation formulae hold as for real variables.

For example,   d ( c ) =  0,    d ( z ) = 1,  d ( z n ) = n z n – 1 .
d z           d z        d z

However, care is required for more unusual functions. 

This last statement is proved using the basic definition.  Show it!

Example f ( z ) = z 2.

f ′( z )  =   lim  (z + ∆ z)2  – z 2 =   lim  z 2 + 2z .∆ z + (∆ z )2  – z 2
=  lim    2z + ∆ z  =  2z.

∆z → 0            ∆ z             ∆z → 0                   ∆ z                        ∆z → 0

Example f ( x ) =  | x | 2 =  x 2 ⇒ f ′( x ) =  2 x  for all x .
But f ( z ) =  | z | 2 ⇒   f ′( z ) exists only at z  =  0 .



More on the derivative

As in the real case, f is differentiable  ⇒ f is continuous.

The same rules apply in the complex case  for the sum, product, quotient and composite of

two differentiable functions (where defined).

Again, with more unusual functions, we may have to use the limit definition of differentiation.

Example d (2z2 + i)5 =  5(2z 2 + i)4.4z =  20z(2z2 + i)4.
dz

Example Investigate d (Re z). 
dz

We get  lim    R e ( z ) –  R e ( z 0 )   
= lim      x –  x 0–––––––––––––––––––––– ––––––––––––––––––––––––––––

z → z 0
z –  z 0               z → z 0

( x –  x 0 )  +  ( y  –  y 0 )

Here we get 0 approaching along x  =  x0, 1 along  y  =  y0.  Hence the limit

does not exist.



Quiz 2.4Quiz 2.4

1. If function  f is continuous at z = z0 , 

then  f must be differentiable there.

(a)  True ;  (b)  False .

2. If f (z) =  | z | 2,  then for all z, 

f ′(z) =  

3. If  f (z) =  (i z + 2)2,  then 

f ′(z) =

4. If  f (z) = cos (z3),  then 

f ′(z) =

1. False.
The converse is true

2. f ′(z ) = 0  if  z = 0.
Else  f ′(z)  does not exist.

3. 2i (i z + 2). Expand and 
differentiate, or directly.

4. – sin (z3). 3z 2.
Use the Chain Rule.
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Cauchy-Riemann Equations (I)

Theorem 2.1 gives us conditions for continuity for a function of a complex variable in

terms of the continuity of the real and imaginary parts. We now ask: Is there any test for

differentiability?

Theorem 2.4 The derivative f ′(z) of  f = u + iv exists at  z ⇔  the first order partial

derivatives ux, vx, uy, vy all exist and satisfy

ux = vy, uy = – vx (the Cauchy-Riemann equations).

Further, f ′(z) =  ux + ivx =  vy – iuy .

Proof Since the derivative of  f exists,

f ′( z 0 )  =  lim    f(z) –  f(z 0) =   lim u (x,  y)+ iv(x,  y) –  u (x0,  y0)+ iv(x0,  y0)
–––––––––––                 ––––––––––––––––––––––––––––––––––––––

z → z 0
z –  z 0 x → x 0

x  +  i y –  x 0 –  i y 0                     (*)
y → y0

=   a  +  i b ( s a y ).    

(continued ... )



Cauchy-Riemann Equations (II)

By Theorem 2.1, the limit of the real part of (*) = a, the limit of the imaginary part of  (*) =  b.

Set  y ≡ y0 to get lim   u (x, y0) –  u (x0, y0) =   ∂ u  =  a––––––––––––––––––          ––
x → x0

x –  x 0 ∂ x

and lim   v(x, y0) –  v(x0, y0) =   ∂ v   =  b––––––––––––––––––         ––
x → x0

x –  x 0 ∂ x

Set  x ≡ x0 to get lim   v(x0, y) –  v(x0, y0) =   ∂ v   =  a–––––––––––––––––          ––
y → y0

y –  y 0 ∂ y

and lim   u (x0, y) –  u (x0, y0) =   ∂ u   =  – b––––––––––––––––––         –– 
y → y0

y –  y 0 ∂ y

Hence all the first partial derivatives exist, ux = vy,  uy = –vx, and 

f ′( z 0 ) =  u x ( x 0 ,  y 0 )  + i v x ( x 0 ,  y 0 ) etc. as required.



Cauchy-Riemann Examples

1. Set f ( z )  =  z 2 =  ( x  +  i y ) 2 =  ( x 2 –  y 2 )  +  2 i x y .

Now  f ′(z ) =  2z exists for all z. So the Cauchy-Riemann equations are satisfied.

We have  u =  x 2 – y2,  v  =  2xy,  and ux =  2x  =  vy,  uy =  – 2y  =  – vx.  

Also  f ′(z ) = ux + ivx = 2x + 2 iy  = 2z as expected.

2. Set  f ( z ) = | z | 2. We show  f ′(z ) does not exist for  z ≠ 0.

Now  f ( z ) =  x2 + y 2,  i.e.  u =  x 2 + y 2,  v =  0,  ux =  2x,  uy =  2y,  vx =  0  =  vy.

So  ux = vy ⇒  x = 0, uy = –vx ⇒ y = 0.

Hence  f ′(z ) can only exist at (0, 0).

Does  f ′(0 ) exist?  Yes; as suggested earlier, but we must use a first principles argument to

show it. XXXXXXXXXXXXXXXXXXXXX



Sufficient conditions

Theorem 2.4 gives necessary conditions for  f to be differentiable.  We now seek sufficient

conditions for   f ′ to exist: that is, a similar statement to Theorem 2.4, but using ⇐ .

Theorem 2.5 Let f = u + iv as before.  Suppose 

(i) u, v, ux, vx, uy, vy exist in the neighbourhood 

of (x0, y0),

(ii) ux, vx, uy, vy are continuous at (x0 , y0),

(iii) the Cauchy-Riemann equations are satisfied at 

(x0 , y0).

Then  f ′(z ) exists and at z 0 , f ′( z 0 ) =  ux + ivx

as before.  That is, 

f is differentiable at z 0 ⇐ the given conditions.

Proof We omit this proof. It is not hard, but rather

messy.

Example

The real functions  u = e x cos y,

v = ex sin y are defined and continuous

everywhere. So are ux, vx, uy, vy and

you can easily check that the Cauchy-

Riemann equations are satisfied.

Hence the function 

f ( z ) = ex cos y + i ex sin y

is differentiable everywhere.

Since  ux = u,  vx = v,

f ′(z )  =  f ( z )

( =  ex cis y =  ex + i y =  ez ).



Quiz 2.5Quiz 2.5

1. If f ( z ) =  u + iv and the Cauchy-Riemann equations hold for  u, v,

then f ′(z ) must exist.

(a) True ;  (b) False .

2. For  f  =  u + iv, the Cauchy-Riemann 

equations are  ux =  vy and  vx =  uy .

(a) True ;  (b) False .

3. If  f ( z ) = (x2 – y 2 + 2)  + 2 ixy =  u + iv , 

then the Cauchy-Riemann equations hold.

(a) True ;  (b) False .

4. If  f ( z ) is differentiable, then 

f ′(z ) =  vy – i uy.

(a) True ;  (b) False .

1. False.  
We need continuity.

2. False.  
We require vx =  uy.

3. True. 
Check  ux = 2x = vy, 

uy =  – 2y  =  – vx.

4. True, since 
vy – i uy =  ux + i vx.

x



Analytic functions

Definitions Function f ( z ) is analytic at  z0 if  f ′(z ) exists not only at  z0 but for all z in

some neighbourhood of z0. f ( z ) is analytic in a domain of the z-plane if it is analytic

at every point of the domain.   f ( z ) is entire if it is analytic everywhere.

If  f ( z ) is analytic throughout a domain except for a finite number of points, such points

are singularities or singular points of f .

Examples 

1. f ( z ) = | z | 2 is not analytic anywhere. (It is in fact differentiable only at z = 0).

2. f ( z ) = 1/z is analytic (except at z = 0).

3. f ( z ) = a0 + a1z + . . .  +  an zn is entire.

Examples 

f ( z ) =  1 (z = 0  is a singularity); f ( z )  =       1      ( z = 1, 2 are singularities).
z (z – 1)(z – 2)



Test for analytic functions

Question How can we tell if a function is analytic? We can use Theorem 2.5, or

Theorem 2.6  If  f =  f ( z ) is analytic, then in any formula for  f, x and  y can only occur

in the combination x + iy.

Proof We note that x = 1
2 (z + z– ) ,  y = ( 2

1
i )(z –  z– ) . Hence if w = f ( z ) =  u + iv,

we can regard u, v as functions of z, z– . Now, w is a function of z alone  ⇔  ∂w =  0,  and
∂ z–

∂w =  0  ⇔   ∂ u ∂ x + ∂ u ∂ y  + i ( ∂ v ∂ x +  ∂ v ∂ y )  =  0
∂ z– ∂ x ∂ z– ∂ y ∂ z– ∂ x ∂ z– ∂ y ∂ z–

⇔  1 ∂ u +  1 ∂ u +  i ∂ v +  i ∂ v =  0
2 ∂ x 2 ∂ y 2 ∂ x 2 ∂ y

⇔   ux = vy , uy = – vx ,

equating real, imaginary parts to zero.

Hence f analytic  ⇒ the Cauchy-Riemann equations hold  ⇒ ∂w =  0  as required.
∂ z–

∂



Analytic functions : final comments

Example

f ( z ) = s in(x + 3 iy)

We can say immediately that this function is
not analytic, as x and y do not occur in the
combination   x + iy. In some examples it
is less clear whether or not the   variables can
be combined in this way.

Derivative theorems
The theorems on derivatives quickly
transfer to analytic functions.  Thus
the sum, product, quotient and com-
posite of two analytic functions are
formed in the obvious ways as
before, and each of the resulting
functions is analytic on its domain.

Augustin -Louis Cauchy

The name of Cauchy [pronounced ‘Co′-shee’] (1789 – 1857) is
found frequently in complex analysis.  This is because over much
of his life, he almost single-handedly developed the theory of
complex functions.  He had a prodigious output, writing several
books and 789 papers, some of great length.  



Harmonic functions

Let f  = u + iv be analytic in some domain of the z-plane. Then the Cauchy-Riemann

equations hold:

u x =  v y ,  u y =  – v x .

It can be shown that for analytic function, the partial derivatives of all orders exist and are

continuous functions of x, y. Hence

uxx = vyx and uyy = – vxy.

Assuming continuity of  vyx, vxy, we have vyx = vxy, and hence

uxx + uyy =  0 .

This is Laplace’s equation, and  u is called an harmonic function. 

In the same way we get

vxx + vyy = 0; i.e. v is an harmonic function.

If  f = u + iv,  u and  v  are conjugate harmonic functions.

(Note the different use of the word ‘conjugate’ here).



Finding harmonic functions
-
In applied mathematics (partial differential equations) we often seek an harmonic function
on a given domain which satisfies given boundary conditions. If we are given one of two
conjugate harmonic functions, it is a simple matter to find the other. We use the Cauchy-
Riemann equations.

Example

Let  u   =   y 3  –  3 x 2y . Then  u is harmonic, since u x x =  –  6 y =  –  u y y .

Now using the Cauchy -Riemann equations,  ux =  – 6xy =  vy.

Integrating  v partially with respect to  y gives  v = –3xy2 +  φ(x) and now

vx =  –  uy =  –3y2 + 3x2 ⇒ φ ′ (x )  = 3x2.

Hence  v =  –3xy2 +  x3 + c .

You can check that  v is in fact harmonic! So

f ( z ) = (y3 – 3x2y)  + i(x3 – 3xy2 + c) [ =  i(z3 + c) in fact ].



Quiz 2.6AQuiz 2.6A

1. If  f ( z )  is analytic, then  f ′(z ) exists.

(a) True ;  (b) False .

2. Function  f ( z ) may be differentiable at  z  =  z 0, 

but not analytic near  z  =  z 0.

(a) True ;  (b) False .

3. Function  v(x,  y)  = –3xy2 + x3 is an harmonic 

function.

(a) True ;  (b) False .

4. The harmonic conjugate of  u (x ,  y)  = – 2xy is

1. True.  
By the definition of analytic.

2. True.  
For example, f(z) = | z |2.

3. True. 
vxx = 6x = vyy.

4. v(x, y) = – x 2 + y 2 + c
Use the illustrated method.

x



Quiz 2.6BQuiz 2.6B

Theorem 2.6 If f =  f ( z ) is analytic, then in any formula for  f,  x and y can only occur

in the combination  x + iy.

Proof We note that x = 1
2 (z + z– ) ,  {1} . Hence if w = f ( z ) =  u + iv, we can regard

u, v as functions of z , z– . Now, w is a function of  z alone  ⇔  {22 } and

∂w =  0  ⇔   ∂ u ∂ x + ∂ u ∂ y + i ( {3})  =  0
∂ z– ∂ x ∂ z– ∂ y ∂ z–

⇔  {4} +  i ∂ v +  i ∂ v =  0  ⇔   ux = vy , uy = – vx ,2 ∂ x 2 ∂ y
equating real, imaginary parts to zero.         

Hence  f analytic ⇒ the Cauchy-Riemann equations hold
⇒ ∂w =  0 as required.

∂ z–

Match the above boxes 1, 2, 3, 4 with the selections   (a) y = ( 2
1
i )(z – z– ) , 

(b) ∂ v ∂ x +  ∂ v ∂ y (c) 1 ∂ u +  1 ∂ u (d) ∂w =  0,   
∂ x ∂ z– ∂ y ∂ z– 2 ∂ x 2 ∂ y       ∂ z–

1. 2. 3. 4. ©

1  (a)

2  (d)

3  (b)

4  (c)

x

http://www.maths.adelaide.edu.au/people/pscott/CA/caw0.pdf
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