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Exponential and trigonometric functions

If  z = x + iy,  we define the exponential function exp z = ex cis y (= ez ) .

Notes
1. We can give an alternative definition in terms of power series. Writing out a formal

series for  e iy gives  cis y. 

2. If y = 0, then exp z = exp x = ex.  Thus the complex exponential function naturally
extends the real function.

3. In this definition,  y is in radian measure.
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Properties of the exponential (I)

1. The function exp is entire and d
 d

z (exp z ) = exp z .
(See Thm  2.5 and the example following it .)

2. If  w  =  w ( z ) is analytic in some domain  D, then so is  exp w. 

3. The function exp z = ex cis y is a complex number in polar form:
| exp z |  =  e x, arg ( exp z) =  y.

4. The range of  w =  exp z is the whole w -plane except O.  
For,  w =  ex cis y with ex >  0; to get  w =  ρ cis φ,  set  x =  ln ρ (ρ >  0)  and  y =  φ .

5. Laws of exponents:
exp z1 . exp z2 =  exp(z1 +  z2 ) ; exp z1 / exp z2 =  exp(z1 –  z2 )

6. Powers:
(exp z)m = exp(mz ) m ∈ Z+

(exp z) =  exp 1/n (z + 2kπ i) m, n ∈ Z+

(exp z)m/n =  exp m/n (z + 2kπ i) k ∈ Z+

The proofs follow directly from the
definition of the exponential.  Note that
(e x c i s y )1/n =  e x /n cis ((y + 2kπ )/n).



Properties of the exponential (II)

7. We observe that exp(z + 2π i) = exp z.exp(2π i), 
and that exp(2π i) =  e0.(cos 2π + i sin 2π ) = 1.

It follows that  exp(z + 2π i) =  exp z .

Thus we can divide the z-plane into
periodic strips.  Each strip in the z-
plane is mapped to the whole w-plane
excluding the or igin.   Thus the
exponential function is periodic with a
period of 2π i .

We note the further two properties of the
exponential:

_____
8. exp z– =  exp z .

9. cis θ =  cos θ + i sin θ =  exp(iθ).
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Quiz 3.1Quiz 3.1

1. Function  f(z)  = 3e2z + 4ez is entire.
(a) True ;  (b) False .

2. f(z)  = exp(3 + π i)  = e3.
(a) True ;  (b) False .

3. The range of  w = f(z) = ez is the whole 
complex  w -plane.
(a) True ;  (b) False .

4. exp(2 + 3i) . exp(4 + 5 i)  = e6 cis 8.
(a) True ;  (b) False .

5. | exp(3 i) |   =   3 .
(a) True ;  (b) False .

1. True.  It is the omposition 
of two entire funtions. 

2. False.  The periodicity is  
2π i,  not  π i.

3. False.   O is not included.

4. Add the exponents.

5. False. 
| exp(3i) |  =  | cis(3i)|  =  1.
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Sine and cosine

If  y is a real number, we have

exp(iy)  = cos y + i sin y,  exp(– iy)  =  cos y –  i sin y,
and so

cos y =  1
2 . (exp(iy) + exp(– iy)),

sin y =  1
2 i.(exp(iy) – exp(– iy)).

Thus it is natural to define cosine and sine as:

cos z = 1
2 . (exp(iz) + exp(– iz)),

sin z = 1
2 i.(exp(iz) – exp(– iz)).

These are Euler’s relations.  

Again notice here how we try to generalize, or extend, a ‘real’ situation to the complex
case.
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Properties of sine and cosine

1. Both functions are entire:

d
_d_

z (sin z )  =  cos z ,   d
_d_

z (cos z ) =  – sin z .

2. Both functions are periodic, of period  2π . 
This follows from the periodicity of the exponential 
function.

The functions satisfy the usual identities, as in the real
case.

3. sin2 z +  cos2 z =  1. 

4. sin(z1 +  z2 )  =  sin z1 cos z2 +  sin z2 cos z1 etc.

5. sin(– z )  =  – sin z , cos(– z )  =  cos z ,  etc.

The word ‘sine’

Thinking of the sine con-
structed within a circle,
A–ryabhata called it ardha–-
jya– , meaning ‘half-chord’,
and then abrreviated it to
jya– (‘chord’).  From  jya– ,
the Arabs derive jiba which
was then written jb.  Later
writers substituted jaib,  a
good Arbabian word mean-
ing ‘cove’ or ‘bay’.  Still
later, Gherado of Cremona
(ca 1150) translated jaib
into the Latin equivalent
sinus, whence came our
present sine.



Quiz 3.2Quiz 3.2

1. Function  sin z is periodic, of period 

2. d
_d_

z (cos z)  =  

3. sin z =  0   ⇔  z =  nπ  (n ∈ Z).
(a) True ;  (b) False .

4. If   z  = x  + iy then  | sin z | 2 =  sin2 x +  sinh2 y.
(a) True ;  (b) False .

5. If  z  =  x + iy then  | sin z |  ≤ | sin x |.
(a) True ;  (b) False .

1. The period is 2π . 

2. – sin z.

3. True : 
use the definition.

4. True.  Expand and 
recall definition of 
sinh.

5. True.  Use 
Question 4 above.
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Logarithmic Function

Does the exponential function have an inverse logarithmic function?  

Since the exponential function is periodic, any inverse would have to be multi-valued.
Let us write

w =  log z ⇔  z =  exp w .

If we set z  =  r cis θ ,  w = u + iv,  then r cis θ =  eu cis v.

From this, we deduce that

r  =  e u,   u =  ln r ,  v =  θ + 2kπ .
That is, 

w =  log z =  ln | z | + i (θ + 2kπ ) (k ∈ Z).

Thus there are infinitely many values of log z , the different values differing by 2kπ i.
Each value of  k gives a branch of the logarithm.



The Cut Plane

With  log z =  ln | z | + i (θ + 2kπ ) let us take  – π <  θ ≤ π .
Make a (red) cut in the complex plane along the negative x-axis.
For any fixed value of  k, we obtain a branch which does not cross
this cut. So in the cut plane, each branch is single-valued. In par-
ticular we have the principal branch

Log z =  ln r +  i θ (– π <  θ ≤ π).

Notes
1. A path which crosses the cut moves to the next branch.
2. If z is real and positive, then  Log z =  ln r.

3. We can think of the branch planes interleaved together, with the x-axis as a common
axis.  A path drawn about the origin in one branch plane reaches the cut and then passes
to the next branch plane.

4. Our choice of the positive x-axis for the cut was somewhat arbitrary. Other branch cuts
are possible; but  O is common to them all  –  O is a branch point.
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Properties of the Logarithm (I)

Consider Log z =  ln r +  i θ (– π <  θ ≤ π , r >  0) – that is, over the open domain
excluding the cut.  There are difficulties on the cut, for  θ is not continuous there for any
branch. Hence, for example, the Log function is not continuous on the cut, and so the Log
function is not differentiable there.

1. Log z is analytic over the open domain (– π <  θ <  π , r >  0).

Writing  Log z =  u + iv,  we have  u =  12 ln (x2 + y2) , v =  θ =  arctan y/x .  Hence

ux =      x    ;   uy =       y    ;  vx =  – y    ;   vy =      x     .
x2 + y 2                    x2 + y 2                     x2 + y 2                  x2 + y 2   

These functions are continuous on the given domain and satisfy the Cauchy-Riemann
equations there. Hence by Theorem 2.5,  Log z is analytic.

[Note  There is a problem in defining arctan here when  x =  0.  We could overcome this
by defining  θ =  arccot x/y , or by taking time to develop a polar form of the Cauchy-
Riemann equations.]



Properties of the Logarithm (II)

2. Derivative

d
_d_

z (Log z)  =  1z  ,

d
_d_

z (Log z)  =  ux + ivx =  x  – iy =  1z  .x2 + y 2

All branches have the same derivative, since they differ by a constant.

3. Inverse Property
exp(log z )  =  z (for any branch)
log(exp z )  =  z (for a particular branch).

4. Sums and Differences
log z1 +  log z2 =  log(z1 . z2)
log z1 –  log z2 =  log(z1 / z 2

)

providing we choose the appropriate logarithm branch on the right.



Examples on the Logarithm

Example 1.  Evaluate Log(–1) + Log(–1).

Now  –1  =  1 . cis π ,  so  Log(–1) =  0 + iπ .

Hence  2Log(–1)  =  2π i =  log 1,  but not  Log 1 (=  0).

Example 2.  Show how to make  f (z)  = log z analytic
on the open region A =  G ∪ R.

In the (green) region G, we define  f (z)  = Log z (the
principal value). In the (red) region R, we choose a
different branch of the logarithm, defining  

f (z)  = log | z |  +  i arg z (π <  arg z <  3π).

This definition allows a continuous transition acoss the
cut.
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Quiz 3.3Quiz 3.3

1. The function  log z is
(a) single-valued ;  (b) multiple-valued .

2. log (z1z2)  = log z1 + log z2.
(a) True ;  (b) False .

3. Give the value of  Log 1.

4. It is always true that  Log(z1 /z2
)  =  Log z1 –  Log z2.

(a) True ;  (b) False .

5. For  Log z, the range of the argument is:

1. Multivalued.  
It is the inverse of the 
many- one function 
exp.

2. True.
See the definition.

3. Log 1  =  0.

4. False.  For example, 
take  z1 =  – i, z2 = i.

5. (–π,  π]   
Definition of Log. x



Complex exponents

Using our knowledge of real powers, we define the complex power  zc (c  ∈ C ) by 

zc =  exp(c log z) ,  (z ≠ 0).

Since  zc is defined in terms of the logarithm, we expect  zc to be multivalued, so we use
the cut plane as for the logarithm.  Then since  log z is single-valued and analytic in the
cut plane, so is  zc. 

Now

d
_d_

z (z
c )   =  d

_d_
z (exp(c log z))   =  exp(c log z) . z

c   =  zc . z
c   =  cz c–1.

So

d
_d_

z (z
c )  =  cz c–1.

^̂ ^̂ ^



Exponent examples

1. i 1/4 =  exp( 1
4 log i) = exp( 1

4 i ( π
2 ± 2kπ)) =  exp(π

8
i ± kπ

2
i ) –  four values.

2. i i =  exp(i log i)  =  exp(i ( π
2 ± 2kπ ) i) =  exp(– π

2 ± 2kπ ).
The principal value is  exp(– π

2 ).

3. What is the relationship between  exp z and  e z ?
Clearly  e z =  exp(z log e). 
Now e =  e cis 0,  so  log e =  1 ± 2kπ i,  and  exp(z log e) = exp(z ± 2kπ i z). 

It follows that  e z =  exp z . exp(2kπ i z).  

Setting  k =  0  gives  e z =  exp z.

Thus  exp z is the principal value of the multi-valued power function  e z.



Quiz 3.4Quiz 3.4

1. d
_d_

z (z i )   =  iz i–1.
(a) True ;  (b) False .

2. The principal value of i i is 

3. If z ≠ 0 and k is real, then | z k |  =  | z | k.
(a) True ;  (b) False . 

4. i 1 / 3

(a) is single-valued ; 
(b) has 3 values ; 
(c) has infinitely many values .

5. z n,  (n  ∈ Z)
(a) is single-valued ; 
(b) has n values ; 
(c) has infinitely many values .

1. True.  This is a special case 
of the result in the text.

2. exp(– π
2 )

3. This is true, since
| z k | = exp(kLog | z | ) = | z | k .

4. (b)   For i 1 / 3 =  
exp(π

6
i +  2k

3
π i ),  k =  0, 1, 2.

5. (a) Integer multiples of  2π i 
in the variable of exp give no 
new values.
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Theorem 2.5 Let f  =  u + iv as before.
Suppose 
(i) u, v, ux, vx, uy, vy exist in the neighbour-

hood of (x0, y0),
(ii) ux, vx, uy, vy are continuous at (x0 , y0),
(iii) the Cauchy-Riemann equations are satisfied 

at (x0 , y0).

RETURN

Example
The real functions  u = e x cos y,
v = ex sin y are defined and continuous
everywhere. So are ux, vx, uy, vy and
you can easily check that the Cauchy-
Riemann equations are satisfied.
Hence the function 

f ( z ) = ex cos y + i ex sin y
is differentiable everywhere.
Since  ux = u,  vx = v,
f ′(z )  =  f ( z )

( =  ex cis y =  ex + i y =  ez ).
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