3. ELEMENTARY FUNCTIONS

Exponential and trigonometric functions

If $z=x+i y$, we define the exponential function $\exp z=e^{x}$ cis $y\left(=e^{z}\right)$.

Notes

1. We can give an alternative definition in terms of power series. Writing out a formal series for $e^{i y}$ gives cis y.
2. If $y=0$, then $\exp z=\exp x=e^{x}$. Thus the complex exponential function naturally extends the real function.
3. In this definition, y is in radian measure.

Properties of the exponential (I)

1. The function \exp is entire and $\frac{d}{d z}(\exp z)=\exp z$.
(See Thm 2.5 and the example following it .)
2. If $w=w(z)$ is analytic in some domain D, then so is $\exp w$.
3. The function $\exp z=e^{x}$ cis y is a complex number in polar form: $|\exp z|=e^{x}, \quad \arg (\exp z)=y$.
4. The range of $w=\exp z$ is the whole w-plane except O.

For, $w=e^{x}$ cis y with $e^{x}>0$; to get $w=\rho \operatorname{cis} \phi$, set $x=\ln \rho(\rho>0)$ and $y=\phi$.
5. Laws of exponents:

$$
\exp z_{1} \cdot \exp z_{2}=\exp \left(z_{1}+z_{2}\right) ; \quad \exp z_{1} / \exp z_{2}=\exp \left(z_{1}-z_{2}\right)
$$

6. Powers:

$$
\begin{array}{r}
(\exp z)^{m}=\exp (m z) \quad m \in \mathbf{Z}^{+} \\
(\exp z)=\exp 1_{n}(z+2 k \pi i) m, n \in \mathbf{Z}^{+} \\
(\exp z)^{m / n}=\exp ^{m /}(\mathrm{z}+2 k \pi i) \quad k \in \mathbf{Z}^{+}
\end{array}
$$

The proofs follow directly from the definition of the exponential. Note that $\left(e^{x} \operatorname{cis} y\right)^{1 / n}=e^{x / n} \operatorname{cis}((y+2 k \pi) / n)$.

Properties of the exponential (II)

7. We observe that $\exp (z+2 \pi i)=\exp z \cdot \exp (2 \pi i)$, and that $\exp (2 \pi i)=e^{0} .(\cos 2 \pi+i \sin 2 \pi)=1$.

It follows that $\exp (z+2 \pi i)=\exp z$.
Thus we can divide the z-plane into periodic strips. Each strip in the z plane is mapped to the whole w-plane excluding the origin. Thus the exponential function is periodic with a period of $2 \pi i$.

We note the further two properties of the exponential:
8. $\exp \bar{z}=\overline{\exp z}$.

9. $\operatorname{cis} \theta=\cos \theta+i \sin \theta=\exp (i \theta)$.

Quiz 3.1

1. Function $f(z)=3 e^{2 z}+4 e^{z}$ is entire.
(a) True
$\checkmark \quad ;$ (b) False \square
2. $f(z)=\exp (3+\pi i)=e^{3}$.
(a) True $\quad \square \quad$ (b) False $\quad \square$
3. The range of $w=f(z)=e^{z}$ is the whole complex w-plane.
(a) True $\quad \boldsymbol{\square} \quad$ (b) False $\quad \square$
4. $\exp (2+3 i) \cdot \exp (4+5 i)=e^{6} \mathrm{cis} 8$.
(a) True \square ; (b) False \square
5. $|\exp (3 i)|=3$.
(a) True

; (b) False \square

Sine and cosine

If y is a real number, we have

$$
\exp (i y)=\cos y+i \sin y, \exp (-i y)=\cos y-i \sin y
$$

and so

$$
\begin{aligned}
\cos y & =\frac{1}{2} \cdot(\exp (i y)+\exp (-i y)) \\
\sin y & =\frac{1}{2} i \cdot(\exp (i y)-\exp (-i y))
\end{aligned}
$$

Thus it is natural to define cosine and sine as:

$$
\begin{aligned}
\cos z & =\frac{1}{2} \cdot(\exp (i z)+\exp (-i z)) \\
\sin z & =\frac{1}{2} i \cdot(\exp (i z)-\exp (-i z))
\end{aligned}
$$

These are Euler's relations.
Again notice here how we try to generalize, or extend, a 'real' situation to the complex case.

Properties of sine and cosine

1. Both functions are entire:

$$
\frac{d}{d z}(\sin z)=\cos z, \frac{d}{d z}(\cos z)=-\sin z
$$

2. Both functions are periodic, of period 2π.

This follows from the periodicity of the exponential function.

The functions satisfy the usual identities, as in the real case.
3. $\sin ^{2} z+\cos ^{2} z=1$.
4. $\sin \left(z_{1}+z_{2}\right)=\sin z_{1} \cos z_{2}+\sin z_{2} \cos z_{1}$ etc.
5. $\sin (-z)=-\sin z, \quad \cos (-z)=\cos z$, etc.

The word 'sine'

Thinking of the sine constructed within a circle, $\bar{A} r y a b h a t a ~ c a l l e d ~ i t ~ a r d h \bar{a}-$ $j y \bar{a}$, meaning 'half-chord', and then abrreviated it to $j y \bar{a}$ ('chord'). From jy \bar{a}, the Arabs derive jiba which was then written $j b$. Later writers substituted jaib, a good Arbabian word meaning 'cove' or 'bay'. Still later, Gherado of Cremona (ca 1150) translated jaib into the Latin equivalent sinus, whence came our present sine.

Quiz 3.2

1. Function $\sin z$ is periodic, of period

2. $\frac{d}{d z}(\cos z)=$

3. $\sin z=0 \Leftrightarrow z=n \pi \quad(n \in Z)$.
(a) True $\quad \boldsymbol{\wedge}$ (b) False $\quad \square$
4. If $z=x+i y$ then $|\sin z|^{2}=\sin ^{2} x+\sinh ^{2} y$.
(a) True $\quad \boldsymbol{\wedge} \quad$ (b) False $\quad \square$
5. If $z=x+i y$ then $|\sin z| \leq|\sin x|$.
(a) True
ν
; (b) False \square

Logarithmic Function

Does the exponential function have an inverse logarithmic function?
Since the exponential function is periodic, any inverse would have to be multi-valued. Let us write

$$
w=\log z \Leftrightarrow z=\exp w
$$

If we set $z=r \operatorname{cis} \theta, w=u+i v$, then $r \operatorname{cis} \theta=e^{u} \operatorname{cis} v$.
From this, we deduce that

That is,

$$
r=e^{u}, \quad u=\ln r, v=\theta+2 k \pi
$$

$$
w=\log z=\ln |z|+i(\theta+2 k \pi)(k \in Z)
$$

Thus there are infinitely many values of $\log z$, the different values differing by $2 k \pi i$. Each value of k gives a branch of the logarithm.

The Cut Plane

With $\log z=\ln |z|+i(\theta+2 k \pi)$ let us take $-\pi<\theta \leq \pi$. Make a (red) cut in the complex plane along the negative x-axis. For any fixed value of k, we obtain a branch which does not cross this cut. So in the cut plane, each branch is single-valued. In particular we have the principal branch

$$
\mathbf{L o g} z=\ln r+i \theta \quad(-\pi<\theta \leq \pi)
$$

Notes

1. A path which crosses the cut moves to the next branch.
2. If z is real and positive, then $\log z=\ln r$.
3. We can think of the branch planes interleaved together, with the x-axis as a common axis. A path drawn about the origin in one branch plane reaches the cut and then passes to the next branch plane.
4. Our choice of the positive x-axis for the cut was somewhat arbitrary. Other branch cuts are possible; but O is common to them all $-O$ is a branch point.

Properties of the Logarithm (I)

Consider $\log z=\ln r+i \theta(-\pi<\theta \leq \pi, r>0)$ - that is, over the open domain excluding the cut. There are difficulties on the cut, for θ is not continuous there for any branch. Hence, for example, the Log function is not continuous on the cut, and so the Log function is not differentiable there.

1. $\log z$ is analytic over the open domain $(-\pi<\theta<\pi, r>0)$.

Writing $\log z=u+i v$, we have $u=\frac{1}{2} \ln \left(x^{2}+y^{2}\right), v=\theta=\arctan ^{y / x}$. Hence

$$
u_{x}=\frac{x}{x^{2}+y^{2}} ; \quad u_{y}=\frac{y}{x^{2}+y^{2}} ; \quad v_{x}=\frac{-y}{x^{2}+y^{2}} ; \quad v_{y}=\frac{x}{x^{2}+y^{2}} .
$$

These functions are continuous on the given domain and satisfy the Cauchy-Riemann equations there. Hence by Theorem $2.5, \log z$ is analytic.
[Note There is a problem in defining arctan here when $x=0$. We could overcome this by defining $\theta=\operatorname{arccot}^{x} / y$, or by taking time to develop a polar form of the CauchyRiemann equations.]

Properties of the Logarithm (II)

2. Derivative

$$
\begin{aligned}
& \frac{d}{d z}(\log z)=\frac{1}{z} \\
& \frac{d}{d z}(\log z)=u_{x}+i v_{x}=\frac{x-i y}{x^{2}+y^{2}}=\frac{1}{z} .
\end{aligned}
$$

All branches have the same derivative, since they differ by a constant.
3. Inverse Property

$$
\begin{aligned}
& \exp (\log z)=z \text { (for any branch) } \\
& \log (\exp z)=z \text { (for a particular branch). }
\end{aligned}
$$

4. Sums and Differences

$$
\begin{aligned}
& \log z_{1}+\log z_{2}=\log \left(z_{1} \cdot z_{2}\right) \\
& \log z_{1}-\log z_{2}=\log \left(z_{1} / z_{2}\right)
\end{aligned}
$$

providing we choose the appropriate logarithm branch on the right.

Examples on the Logarithm

Example 1. Evaluate $\log (-1)+\log (-1)$.
Now $-1=1$. cis π, so $\log (-1)=0+i \pi$.
Hence $2 \log (-1)=2 \pi i=\log 1$, but not $\log 1(=0)$.

Example 2. Show how to make $f(z)=\log z$ analytic on the open region $A=G \cup R$.

In the (green) region G, we define $f(z)=\log z$ (the principal value). In the (red) region R, we choose a different branch of the logarithm, defining

$$
f(z)=\log |z|+i \arg z \quad(\pi<\arg z<3 \pi) .
$$

This definition allows a continuous transition acoss the cut.

Quiz 3.3

1. The function $\log z$ is
(a) single-valued

(b) multiple-valued \square .
2. $\log \left(z_{1} z_{2}\right)=\log z_{1}+\log z_{2}$.
(a) True $\quad \boldsymbol{\nu}$; (b) False \square
3. Give the value of $\log 1$.

4. It is always true that $\log \left(z_{1} / z_{2}\right)=\log z_{1}-\log z_{2}$.
(a) True $\quad \boldsymbol{\checkmark}$; (b) False $\quad \square$.
5. For $\log z$, the range of the argument is:
\square

Complex exponents

Using our knowledge of real powers, we define the complex power $z^{c}(c \in \boldsymbol{C})$ by

$$
z^{c}=\exp (c \log z),(z \neq 0)
$$

Since z^{c} is defined in terms of the logarithm, we expect z^{c} to be multivalued, so we use the cut plane as for the logarithm. Then since $\log z$ is single-valued and analytic in the cut plane, so is z^{c}.

Now

$$
\frac{d}{d z}\left(z^{c}\right)=\frac{d}{d z}(\exp (c \log z))=\exp (c \log z) \cdot \frac{z}{c}=z^{c} \cdot \frac{z}{c}=c z^{c-1}
$$

So

$$
\frac{d}{d z}\left(z^{c}\right)=c z^{c-1}
$$

Exponent examples

1. $i^{1 / 4}=\exp \left(\frac{1}{4} \log i\right)=\exp \left(\frac{1}{4} i\left(\frac{\pi}{2} \pm 2 k \pi\right)\right)=\exp \left(\frac{\pi i}{8} \pm \frac{k \pi i}{2}\right)-$ four values.
2. $i^{i}=\exp (i \log i)=\exp \left(i\left(\frac{\pi}{2} \pm 2 k \pi\right) i\right)=\exp \left(-\frac{\pi}{2} \pm 2 \mathrm{k} \pi\right)$.

The principal value is $\exp \left(-\frac{\pi}{2}\right)$.
3. What is the relationship between $\exp z$ and e^{z} ?

Clearly $e^{z}=\exp (z \log e)$.
Now $e=e$ cis 0 , so $\log e=1 \pm 2 k \pi i$, and $\exp (z \log e)=\exp (z \pm 2 k \pi i z)$.
It follows that $e^{z}=\exp z \cdot \exp (2 k \pi i z)$.
Setting $k=0$ gives $e^{z}=\exp z$.
Thus $\exp z$ is the principal value of the multi-valued power function e^{z}.

Quiz 3.4

1. $\frac{d}{d z}\left(z^{i}\right)=i z^{i-1}$.
(a) True

; (b) False \square
2. The principal value of i^{i} is
3. If $z \neq 0$ and k is real, then $\left|z^{k}\right|=|z|^{k}$.
(a) True
 ; (b) False

4. $i^{1 / 3}$
(a) is single-valued
(b) has 3 values
(c) has infinitely many values

5. $z^{n},(n \in Z)$
(a) is single-valued
(b) has n values
(c) has infinitely many values

Theorem 2.5 Let $f=u+i v$ as before.
Suppose
(i) $u, v, u_{x}, v_{x}, u_{y}, v_{y}$ exist in the neighbourhood of $\left(x_{0}, y_{0}\right)$,
(ii) $u_{x}, v_{x}, u_{y}, v_{y}$ are continuous at $\left(x_{0}, y_{0}\right)$,
(iii) the Cauchy-Riemann equations are satisfied at $\left(x_{0}, y_{0}\right)$.

Example

The real functions $u=e^{x} \cos y$, $v=e^{x} \sin y$ are defined and continuous everywhere. So are $u_{x}, v_{x}, u_{y}, v_{y}$ and you can easily check that the CauchyRiemann equations are satisfied.
Hence the function

$$
f(z)=e^{x} \cos y+i e^{x} \sin y
$$

is differentiable everywhere.
Since $u_{x}=u, v_{x}=v$, $f^{\prime}(z)=f(z)$

$$
\left(=e^{x} \operatorname{cis} y=e^{x+i y}=e^{z}\right)
$$

