3. ELEMENTARY FUNCTIONS

Exponential and trigonometric functions

If z = x + iy, we define the **exponential function** $exp \ z = e^x \operatorname{cis} y \ (= e^z)$.

Notes

- 1. We can give an alternative definition in terms of power series. Writing out a formal series for e^{iy} gives cis y.
- 2. If y = 0, then exp $z = \exp x = e^x$. Thus the complex exponential function naturally extends the real function.

C

3. In this definition, *y* is in radian measure.

Properties of the exponential (I)

- 1. The function exp is entire and $\frac{d}{dz}(\exp z) = \exp z$. (See Thm 2.5 and the example following it .)
- 2. If w = w(z) is analytic in some domain D, then so is exp w.
- 3. The function $\exp z = e^x \operatorname{cis} y$ is a complex number in *polar* form: $|\exp z| = e^x$, $\arg(\exp z) = y$.
- 4. The range of $w = \exp z$ is the whole w-plane except O. For, $w = e^x \operatorname{cis} y$ with $e^x > 0$; to get $w = \rho \operatorname{cis} \phi$, set $x = \ln \rho$ ($\rho > 0$) and $y = \phi$.
- 5. Laws of exponents: $\exp z_1 \cdot \exp z_2 = \exp(z_1 + z_2)$; $\exp z_1 / \exp z_2 = \exp(z_1 - z_2)$

6. Powers:

$$(\exp z)^{m} = \exp(mz) \quad m \in \mathbb{Z}^{+}$$
$$(\exp z) = \exp \frac{1}{n} (z + 2k\pi i) \quad m, n \in \mathbb{Z}^{+}$$
$$(\exp z)^{m/n} = \exp \frac{m}{n} (z + 2k\pi i) \quad k \in \mathbb{Z}^{+}$$

The proofs follow directly from the definition of the exponential. Note that $(e^x \operatorname{cis} y)^{1/n} = e^{x/n} \operatorname{cis} ((y + 2k\pi)/n).$

Properties of the exponential (II)

7. We observe that $\exp(z + 2\pi i) = \exp z . \exp(2\pi i)$, and that $\exp(2\pi i) = e^0 . (\cos 2\pi + i \sin 2\pi) = 1$.

It follows that $\exp(z + 2\pi i) = \exp z$.

Thus we can divide the *z*-plane into **periodic strips**. Each strip in the *z*-plane is mapped to the whole *w*-plane excluding the origin. Thus the exponential function is **periodic** with a period of $2\pi i$.

We note the further two properties of the exponential:

8. $\exp \overline{z} = \overline{\exp z}$.

9.
$$\operatorname{cis} \theta = \operatorname{cos} \theta + i \sin \theta = \exp(i\theta)$$
.

Quiz 3.1

- 1. Function $f(z) = 3e^{2z} + 4e^{z}$ is entire. (a) True ; (b) False
- 2. $f(z) = \exp(3 + \pi i) = e^3$. (a) True ; (b) False
- 3. The range of w = f(z) = e^z is the whole complex w-plane.
 (a) True ; (b) False

4.
$$exp(2 + 3i) . exp(4 + 5i) = e^{6}cis 8.$$

(a) True ; (b) False

5. $|\exp(3i)| = 3$. (a) True ; (b) False

- **1.** True. It is the omposition of two entire functions.
- 2. False. The periodicity is $2\pi i$, not πi .
- **3.** False. *O* is not included.
- 4. Add the exponents.
- 5. False. $|\exp(3i)| = |\cos(3i)| = 1.$

X

CHECK

Sine and cosine

If *y* is a real number, we have

$$\exp(iy) = \cos y + i \sin y, \ \exp(-iy) = \cos y - i \sin y,$$

and so

$$\cos y = \frac{1}{2} \cdot (\exp(iy) + \exp(-iy)),$$

$$\sin y = \frac{1}{2} i \cdot (\exp(iy) - \exp(-iy)).$$

Thus it is natural to define **cosine** and **sine** as:

$$\cos z = \frac{1}{2} \cdot (\exp(iz) + \exp(-iz)),$$

$$\sin z = \frac{1}{2} i \cdot (\exp(iz) - \exp(-iz)).$$

These are **Euler's relations**.

Again notice here how we try to generalize, or extend, a 'real' situation to the complex case.

Properties of sine and cosine

1. Both functions are entire:

$$\frac{d}{dz}(\sin z) = \cos z, \ \frac{d}{dz}(\cos z) = -\sin z.$$

 Both functions are periodic, of period 2π. This follows from the periodicity of the exponential function.

The functions satisfy the usual identities, as in the real case.

3.
$$\sin^2 z + \cos^2 z = 1$$
.

4.
$$\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \sin z_2 \cos z_1$$
 etc.

5.
$$\sin(-z) = -\sin z$$
, $\cos(-z) = \cos z$, etc.

The word 'sine'

Thinking of the sine constructed within a circle, Āryabhata called it $ardh\overline{a}$ $jy\overline{a}$, meaning 'half-chord', and then abrreviated it to $jy\overline{a}$ ('chord'). From $jy\overline{a}$, the Arabs derive *jiba* which was then written *jb*. Later writers substituted jaib, a good Arbabian word meaning 'cove' or 'bay'. Still later, Gherado of Cremona (ca 1150) translated jaib into the Latin equivalent sinus, whence came our present sine.

Quiz 3.2

- **1.** Function $\sin z$ is periodic, of period
- 2. $\frac{d}{dz}(\cos z) =$
- 3. $\sin z = 0 \iff z = n\pi \quad (n \in \mathbb{Z}).$ (a) True ; (b) False
- 4. If z = x + iy then $|\sin z|^2 = \sin^2 x + \sinh^2 y$. (a) True ; (b) False .
- 5. If z = x + iy then $|\sin z| \le |\sin x|$. (a) True ; (b) False

- **1.** The period is 2π .
- **2.** $-\sin z$.
- **3.** True : use the definition.
- **4.** True. Expand and recall definition of sinh.
- **5.** True. Use Question 4 above.

X

Logarithmic Function

Does the exponential function have an inverse logarithmic function?

Since the exponential function is periodic, any inverse would have to be multi-valued. Let us write

 $w = \log z \iff z = \exp w.$

If we set $z = r \operatorname{cis} \theta$, w = u + iv, then $r \operatorname{cis} \theta = e^u \operatorname{cis} v$.

From this, we deduce that

 $r = e^{u}$, $u = \ln r$, $v = \theta + 2k\pi$.

That is,

$$w = \log z = \ln |z| + i(\theta + 2k\pi) \ (k \in \mathbb{Z}).$$

Thus there are infinitely many values of log z, the different values differing by $2k\pi i$. Each value of k gives a **branch** of the logarithm.

The Cut Plane

With $\log z = \ln |z| + i(\theta + 2k\pi)$ let us take $-\pi < \theta \le \pi$. Make a (red) cut in the complex plane along the negative *x*-axis. For any fixed value of *k*, we obtain a branch which does not cross this cut. So in the cut plane, each branch is single-valued. In particular we have the **principal branch**

 $\operatorname{Log} z = \ln r + i \theta \quad (-\pi < \theta \le \pi).$

y CUT O x

Notes

- **1.** A path which crosses the cut moves to the next branch.
- 2. If z is real and positive, then $\text{Log } z = \ln r$.
- **3.** We can think of the branch planes interleaved together, with the *x*-axis as a common axis. A path drawn about the origin in one branch plane reaches the cut and then passes to the next branch plane.
- 4. Our choice of the positive x-axis for the cut was somewhat arbitrary. Other branch cuts are possible; but O is common to them all -O is a **branch point**.

Properties of the Logarithm (I)

Consider Log $z = \ln r + i \theta$ ($-\pi < \theta \le \pi$, r > 0) – that is, over the *open* domain excluding the cut. There are difficulties on the cut, for θ is not continuous there for any branch. Hence, for example, the Log function is not continuous on the cut, and so the Log function is not differentiable there.

1. Log z is analytic over the open domain $(-\pi < \theta < \pi, r > 0)$.

Writing Log z = u + iv, we have $u = \frac{1}{2} \ln (x^2 + y^2)$, $v = \theta = \arctan \frac{y}{x}$. Hence

$$u_x = \frac{x}{x^2 + y^2}; \quad u_y = \frac{y}{x^2 + y^2}; \quad v_x = \frac{-y}{x^2 + y^2}; \quad v_y = \frac{x}{x^2 + y^2}$$

These functions are continuous on the given domain and satisfy the Cauchy-Riemann equations there. Hence by Theorem 2.5, Log z is analytic.

[Note There is a problem in defining arctan here when x = 0. We could overcome this by defining $\theta = \operatorname{arccot} \frac{x}{y}$, or by taking time to develop a polar form of the Cauchy-Riemann equations.]

Properties of the Logarithm (II)

2. Derivative

$$\frac{d}{dz}(\operatorname{Log} z) = \frac{1}{z}$$

$$\frac{d}{dz}(\text{Log } z) = u_x + iv_x = \frac{x - iy}{x^2 + y^2} = \frac{1}{z} .$$

All branches have the same derivative, since they differ by a constant.

3. Inverse Property

 $exp(\log z) = z$ (for any branch) log(exp z) = z (for a particular branch).

4. Sums and Differences

 $\log z_1 + \log z_2 = \log(z_1 \cdot z_2)$ $\log z_1 - \log z_2 = \log(z_1 / z_2)$

providing we choose the appropriate logarithm branch on the right.

Examples on the Logarithm

Example 1. Evaluate Log(-1) + Log(-1).

Now $-1 = 1 \cdot cis \pi$, so $Log(-1) = 0 + i\pi$.

Hence $2Log(-1) = 2\pi i = \log 1$, but not Log 1 (= 0).

Example 2. Show how to make $f(z) = \log z$ analytic on the open region $A = G \cup R$.

In the (green) region G, we define f(z) = Log z (the principal value). In the (red) region R, we choose a different branch of the logarithm, defining

 $f(z) = \log |z| + i \arg z \ (\pi < \arg z < 3\pi).$

This definition allows a continuous transition acoss the cut.

Quiz 3.3				
1.	The function $\log z$ is (a) single-valued ; (b) multiple-valued .	1.	Multivalued. It is the inverse of the	
2.	$log(z_1z_2) = log z_1 + log z_2.$ (a) True ; (b) False .		many-one function exp.	
3.	Give the value of Log 1.	2.	True. See the definition.	
		3.	Log 1 = 0.	
4.	It is always true that $Log(z_1/z_2) = Log z_1 - Log z_2$. (a) True ; (b) False .	4.	False. For example, take $z_1 = -i$, $z_2 = i$.	
5.	For Log z , the range of the argument is:	5.	$(-\pi, \pi]$ Definition of Log. X	

Complex exponents

Using our knowledge of real powers, we define the complex power z^c ($c \in C$) by

$$z^c = \exp(c \log z), (z \neq 0).$$

Since z^c is defined in terms of the logarithm, we expect z^c to be multivalued, so we use the cut plane as for the logarithm. Then since $\log z$ is single-valued and analytic in the cut plane, so is z^c .

Now

$$\frac{d}{dz}(z^c) = \frac{d}{dz}(\exp(c \log z)) = \exp(c \log z) \cdot \frac{z}{c} = z^c \cdot \frac{z}{c} = cz^{c-1}.$$

So

$$\frac{d}{dz}(z^c) = c z^{c-1}.$$

Exponent examples

- **1.** $i^{1/4} = \exp(\frac{1}{4}\log i) = \exp(\frac{1}{4}i(\frac{\pi}{2} \pm 2k\pi)) = \exp(\frac{\pi i}{8} \pm \frac{k\pi i}{2})$ four values.
- 2. $i^{i} = \exp(i \log i) = \exp(i(\frac{\pi}{2} \pm 2k\pi)i) = \exp(-\frac{\pi}{2} \pm 2k\pi).$ The principal value is $\exp(-\frac{\pi}{2})$.
- 3. What is the relationship between exp z and e^z? Clearly e^z = exp(z log e). Now e = e cis 0, so log e = 1 ± 2kπi, and exp(z log e) = exp(z ± 2kπiz). It follows that e^z = exp z . exp(2kπiz). Setting k = 0 gives e^z = exp z.

Thus $\exp z$ is the principal value of the multi-valued power function e^{z} .

Quiz 3.4

- 1. $\frac{d}{dz}(z^{i}) = iz^{i-1}.$ (a) True ; (b) False
- **2.** The principal value of i^i is
- 3. If $z \neq 0$ and k is real, then $|z^k| = |z|^k$. (a) True ; (b) False .

4. $i^{1/3}$

- (a) is single-valued(b) has 3 values(c) has infinitely many values
- **5.** z^n , $(n \in Z)$
 - (a) is single-valued
 (b) has *n* values
 - (c) has infinitely many values

- 1. True. This is a special case of the result in the text.
- $2. \quad \exp(-\frac{\pi}{2})$
- 3. This is true, since $|z^k| = \exp(k \operatorname{Log} |z|) = |z|^k$.
- 4. (b) For $i^{1/3} = \exp(\frac{\pi i}{6} + \frac{2k\pi i}{3}), k = 0, 1, 2.$
- 5. (a) Integer multiples of $2\pi i$ in the variable of exp give no new values.

Theorem 2.5 Let f = u + iv as before. Suppose

(i) u, v, u_x, v_x, u_y, v_y exist in the neighbourhood of (x₀, y₀),
(ii) u_x, v_x, u_y, v_y are continuous at (x₀, y₀),
(iii) the Cauchy-Riemann equations are satisfied at (x₀, y₀).

RETURN

Example

The real functions $u = e^x \cos y$, $v = e^x \sin y$ are defined and continuous everywhere. So are u_x , v_x , u_y , v_y and you can easily check that the Cauchy-Riemann equations are satisfied. Hence the function $f(z) = e^x \cos y + i e^x \sin y$ is differentiable everywhere. Since $u_x = u$, $v_x = v$, f'(z) = f(z)

 $(= e^x \operatorname{cis} y = e^{x + iy} = e^z).$