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There are many practical situations where we try to simplify a problem by transforming it.
We investigate how various regions in the plane are transformed by elementary analytic
functions.

You may find the following website helpful:
http://www.malilla.supereva.it/Pages/Fractals/Cmapper/cm.html

Linear Functions (I)

1. w  =  f (z)   = z  + c (c = (c1,  c2)  ∈ C) –  this is a translation through c. 
Each z =  (x, y) maps to  w = (x + c1,  y + c2 ) .

2. Let  b =  | b | cis θ be a complex constant and let  w = f (z)  = bz .
If z  =  r cis φ,  then  w  =  r . | b | . cis(θ + φ). 
That is, each point  (r, θ)  maps to  (| b | . r, θ + φ).
Thus we have a rotation about  O through  φ and an enlargement through  | b |. ©

http://www.malilla.supereva.it/Pages/Fractals/Cmapper/cm.html
http://www.maths.adelaide.edu.au/people/pscott/CA/caw0.pdf


Linear Functions (II) 

The general linear function is the mapping  w = f(z)  = bz + c .  This is the rotation and
enlargement (2), followed by the translation (1) previously discussed. That is,

z   → bz  → bz + c .

Example 

Consider the transformation w  =  iz +  (i + 1).
This maps square A to square B in the figure below.  Notice that S is an invariant point
of this transformation.  Geometrically, we have:

rotation  × translation  =  rotation.



The Function  f (z)  = z 2 ( I )

Let  w = f(z)  =  z2.  Then if z =  r cis θ and  w = ρ cis φ,  we have

ρ cis φ =  r2 cis 2θ and (r, θ)  → (ρ, φ) = (r2, 2θ ).

We note that in general, the mapping  w = f (z)  = z2 will not be 1–1. 
For example, the points  ± z both map to the same  w.

Example 

The first quadrant of the complex plane maps to the top half-plane under this mapping,
since the angle range  0  ≤ θ ≤ π/2 maps to the range  0  ≤ φ ≤ π.



The Function  f (z)  = z 2 ( I I )

Let us now write  w = f(z)  =  z2 in cartesian coordinates.  Setting  w  =  u  + iv ,
z  = x  + iy , we obtain  u + iv = (x2 – y2)  + 2xyi . That is, (x, y) → (x2 – y2, 2xy).

So z -points on the hyperbola  x2 – y2 =  k map to points on the straight line  u = k.
Similarly z-points on the hyperbola  2xy = k ′ map to points on the straight line  v = k′.
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Quiz 4.1Quiz 4.1

1. Under the mapping  w = iz + 2 the point  1  + i
is left invariant.
(a) True ; (b) False .

2. Under  w  =  iz + 2,  (2, 0)  is a vertex of the image 
of the square  0   ≤ x,  y  ≤ 1.
(a) True ; (b) False .

3. The mapping  w  =  z2 with domain  
{z | z  =  r cis θ,  –π/4 <   θ  <   0}  is 1 – 1 .
(a) True ; (b) False .

4. The mapping w  =  z2 maps the second quadrant  
π/2  ≤ θ ≤ π to a halfplane.
(a) True ; (b) False .

1. True.  Substitute 1 +  i.

2. True.  The given square
is rotated about O
through π/2 and 
translated 2 in the 
x-direction.

3. True.  The image 
region – π/2 < θ <  0 
does not overlap itself.

4. True.  The image is
π ≤ θ ≤ 2π . x



The Function f (z)  = 1/z
The mapping  w =  f ( z ) =  1/z (equivalently  z = 1/w ) sets up a 1–1 correspondence
between points in the  z - and w - planes excluding  z =  0, w =  0. 

In polar coordinates,  w =  1/z becomes  ρ cis φ =  1r cis (–θ).
This transformation is the product of two simpler transformations:

z =  r cis θ → z′ =    1r cis θ and  z′ =    1r cis θ → w =  z–′

– inversion in the unit circle  � followed by reflection in the  x-axis.

Notes
1. Under inversion, the points on  � remain invariant.
2. Under w =  1/z , (and under inversion),

the centre of � remains invariant;
lines through  O map to lines through O;
the interior of �↔ the exterior of �; 

(in fact, all circles centred at  O map to circles centred at  O ).



Mapping Circles and Lines under f (z) =  1/z (I)

Question What is the effect of  f ( z ) =  1/z on more general lines and circles?

Expressing  w =  f ( z ) =  1/z in terms of cartesian coordinates, we obtain

w  =  u + iv =      1    =   x –  iy
x + iy x2 + y2 x2 +  y2

Thus
u = x ,  v =    y

x2 + y2                     x2 + y2

and inversely 

x = u ,  y =    v .     
u 2 + v2                      u 2 + v2

To
catch  a  l i on  in

the  Sahara  Deser t ,
place a spherical cage in

the  deser t ,  en ter i t ,  and
lock  i t .   Now per form an
inversion with respect to the
cage.  The lion is then in

the interior of the cage,
and we are outside.

H. Pétard



Mapping Circles and Lines under f (z) =  1/z (II)
Now consider the equation 

a (x2 + y2)  + bx + cy + d =  0   (a,  b ,  c ,  d  ∈ R ) .  (*)

If  a ≠ 0, this is the equation of a circle; if  a =  0, the equation of a straight line.

Substituting for  x, y in terms of  u, v we get

d ( u 2 +  v 2 )  +  b u –  c v +  a =  0   ( † )

Points (u, v) satisfying (†) correspond to points (x, y ) satisfying (*). Hence we have the
four cases:

(a)  a ≠ 0,  d ≠ 0.  Circle not through O → circle not through O. 
(b)  a ≠ 0,  d =  0.  Circle through O → straight line not through O. 
(c)  a =  0,  d ≠ 0.  Straight line not through O → circle through O.
(d)  a =  0,  d =  0.  Straight line through O → straight line through O.



Example of a Mapping under f ( z )  = 1/z
What is the image under  w = f (z)  = 1/z of the line  x  =  c?
The line  x  =  c maps to the set of points satisfying 

      u      =  c,   that is, u2 + v2 –  uc =  0, or (u –  12 c)2 +  v2 =  ( 12 c)2.
u 2 +  v 2

This is the circle with centre  ( 21c , 0),  passing through the origin  O.
The half plane  x  >  c maps to the interior of the disc.
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QUIZ 4.2QUIZ 4.2

1. Under the mapping  w =  1/z the image of  3 +  2i is 

2. Under  w =  1/z , the circle  | z – 1 |  =  1  maps to 

3. Under  w =  1/z , the halfplane  y >  1  maps to   

4. Under  w =  1/z , any circle centred at  O maps to itself.
(a) True ;  (b) False .

1. The image is 
1
3
3 –  1 23 i.

2. The given circle 
passes through O. 
It maps to the straight
line  x =  12.

3. The interior of the 
circle with diamter 
OP where P(0,1) .

4. Only true for the 
circle of radius 1. x



Bilinear Transformations

Let  T be the transformation  w  =  a z  +  b ,  (ad – bc ≠ 0,  a, b, c, d ∈ C ).cz + d

This is called a bilinear transformation as it can be rewritten as
c w z  +  d w  –  a z  –  b  =   0

–  an equation which is linear in each of its variables,  z and  w. 

Solving for  w in terms of  z, we see that the inverse of T is another bilinear
transformation: 

T – 1   :   z  =  – d w +  b .cw  –  a

Notes

1. The singular points for  T, T – 1  are  z =  – d/c , w =  a/c respectively.  
As each mapping has just one singular point, we write

z =  – d/c → ‘w =  – ∞’,   w =  a/c → ‘z =  – ∞’. 

2. The set of bilinear transformations forms a group.



Understanding the Bilinear Transformation

In the formula for a bilinear transformation, if  c ≠ 0, we can write

w   =   a z  +  b = a(z +  d/c )  +  (b – a d/ c )  =   a +  (b – a d/ c )––––––––      –––––––––––––––––––––––       ––        –––––––––– 
cz  + d c(z  + d /c)                c        cz  + d

Setting   z ′ = cz + d, z ′ ′ = 1/ z ′  we obtain 

w =  a +   (bc – ad ) z ′ ′  . (*)c            c

If   c =  0, we get an expression of type  (*)  immediately.

It follows that any bilinear transformation can be obtained as the composition of linear
transformations and the mapping   f (z)  = 1/z ,  all of which map lines and circles to lines
and circles.

Hence any bilinear transformation maps the set of lines and circles to itself.



Images under a Bilinear Transformation

The following reult will be useful.

Theorem 4.1 There exists a unique bilinear transformation which maps three given
distinct points z1,  z2,  z3 onto three distinct points w1,  w2,  w3 respectively.

Proof The algebraic expression for the bilinear transformation can be written as           

cwz + dw – az  –  b  =  0.   

This is an equation in four unknowns  a, b, c, d. Hence the three ratios  a : b : c : d of
these numbers are determined by substituting three pairs of corresponding values of
z i,  w i (1 ≤ i ≤ 3).

In practice, this means that in general if we allocate image points to three points in the
z-plane, then the bilinear transformation will be completely determined. Conversely, if we
want to find the image of a circle (say) under a given bilinear transformation, then it is
sufficient to find the images of three points on the circle.



Bilinear Transformation: Example

Let  a ∈ C be constant with  Im a >  0.  Find the image of the upper half plane (y ≥ 0)
under the bilinear transformation

w  = z – a .z – a–

We first consider the boundary. For  z on the  x - axis, we have | z – a |  =  | z – a– |.  Hence
for such points, 

| w | =  |z  –  a | =  1.| z – a– |

That is, the x - axis maps to the unit circle
having centre  O.

Also,  z  = a (a point in the upper half plane)
maps to  w =  0  (a point interior to the unit
circle). Observing that the mapping is continu-
ous, we deduce that the image of the upper half
plane is the interior of the disc.
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QUIZ 4.3QUIZ 4.3

1. The bilinear transformation which maps 
0 → –1, –1 → 0, 1 → ∞ maps i →

2. The image of the x-axis under  w  =  z – i
z + 1

is 

3. The image of the y-axis under w  =  z – i 
z + 1

is  

4. A bilinear transformation mapping a circle to a circle 
must map the interior of one to the interior of the other.
(a) True (b) False .

1. The image is  – i.

2. The line y = x + 1.  
Note that  –1 → ∞.

3. The  circle centre 
0 .5  –  0 .5 i , passing 
through O.  Thus 
0 → – i,  ∞ → 1, 
i → 0.

4. False.  Consider    
| z |  <  1 under 
w = 1/z .

x



The Transformation   w =  exp z

As before, we set  z  = x  + iy,  w = ρ cis φ.   
Then  w =  exp z gives ρ =  ex and  φ =  y.

The line  y  =  c maps onto the ray  φ =  c (excluding the end-point O ) in a 1–1 fashion.
Similarly, the line  x  =  c maps onto the circle ρ = ec. However, here, an infinite number
of points on the line map to each image point.

Combining these results, we see that the rectangular region 

a ≤ x ≤ b, c ≤ y ≤ d

is mapped to the region

e a ≤ ρ ≤ e b ,  c ≤ φ  ≤ d ,

bounded by portions of circles and rays.

This mapping is  1 – 1  if d – c <  2π.
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Special Case of w = exp z

As a particular case, under the exponential mapping, the strip  0  <  y <  π maps to the upper
half plane  ρ >  0,  0  <  φ <  π of the w -plane.

It is interesting to map the boundary points here. 

This mapping is useful in applications.
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QUIZ 4.4QUIZ 4.4

1. Under the mapping  w = exp z ,
the image of the x-axis is unbounded.
(a) True ; (b) False .

2. Under the mapping  w = exp z ,
the image of the  y-axis is unbounded.
(a) True ; (b) False .

3. Under  w = exp z ,  equally spaced lines 
parallel to the  y-axis map to 
equally spaced concentric circles.
(a) True ; (b) False .

4. Under  w = exp z ,  the line  y = c
maps to a ray in the w -plane.  Then
the opposite ray arises from the line  y = – c .
(a) True ; (b) False . ©

1. True:  x unbounded  ⇒
ρ =  ex unbounded.

2. False:  x =  0   ⇒
ρ =  1,  so bounded.

3. False: there is an 
exponential factor.

4. False: the opposite 
ray arises from  
y =  c + (2k + 1)π.

x

http://www.maths.adelaide.edu.au/people/pscott/CA/caw0.pdf
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