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Definite integrals

Integrals are extremely important in the study of functions of a complex variable. The
theory is elegant, and the proofs generally simple. The theory is put to much good use in
applied mathematics.

We shall study line integrals of  f (z) . In order to do this we shall need some preliminary
definitions.

Let  F ( t )  =  U ( t )  +  iV ( t )  (a ≤ t ≤ b ) where  U , V are real-valued, piecewise-
continuous functions of  t on  [a, b],  i.e. continuous except for at most a finite number of
jumps.

The definite integral of  F on the interval  a ≤ t ≤ b is now defined by:

Definition ∫
a

b F( t)  dt =  ∫
a

b U( t)  dt + i  ∫
a

b V( t)  dt .
©
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Properties of the definite integral

1. Re (∫
a

b F(t) dt)  =  ∫
a

b U(t) dt =  ∫
a

b Re (F(t)) dt. [Real part property]

2. ∫
a

b kF =   k ∫
a

b F ;  (k ∈ C,  const). [Scalar multiple property]

3. ∫
a

b (F + G)  =   ∫
a

b F +  ∫
a

b G. [Addition property]

4. ∫
a

b F =  –  ∫
b

a F. [Interchange endpoints property]

5. | ∫
a

b F |   ≤ ∫
a

b |  F |    (a ≤ b )  [Modulus property]

Property (1) follows immediately from the definition. 

The proofs of (2), (3), (4) are trivial, and follow from the properties of real integrals.

We see from (2) and (3) that the integral behaves in a linear way.



Proof of Property (5)

5. | ∫
a

b F |   ≤ ∫
a

b |  F |    (a ≤ b )  [Modulus property]

Proof  By definition,  ∫
a

b F dt is a complex number.  

So we can set  r0 cis  θ0 =  ∫
a

b F dt .

By Property (2),   r0 =   ∫
a

b F cis  (–θ 0 )  dt .

Each side is real, and when a complex number is real, it is the same as its real part. 

So by Property (1), r0 =   ∫
a

b Re ( F cis  (–θ 0 ))  dt .

But  Re ( F cis  (–θ 0 ))  ≤ | F cis  (– θ 0 ) |   =   | F |.| c is  (–θ 0 ) |  =  | F |.

So r0  ≤ ∫
a

b |  F |  dt , providing  a  ≤ b.

Hence |  ∫
a

b F dt |   ≤ ∫
a

b |  F | dt .



Arcs

Definition A continuous arc is a set of points  (x, y ): x = φ(t), y = ψ(t ) (a ≤ t ≤ b),
where  φ, ψ are real continuous functions of the real parameter  t.

Notes
1. The definition gives a continuous mapping of  [a, b ]  to the arc with a corresponding 

ordering of points. 

2. If no two distinct values of t map to the same point  (x, y), the arc is a simple arc or a 
Jordan arc. 

3. If  Note (2)  holds except that φ (a) = φ (b) and ψ (a) = ψ (b), the arc is a simple
closed curve or  Jordan curve.

Examples
In the adjacent figure we have:

(a) Jordan arc 
(b) Non-simple curve
(c) Jordan curve
(d) Non-simple closed curve. (a)       (b)      (c)           (d)



Contours

If functions  φ, ψ have continuous derivatives  φ ' ( t ) , ψ' ( t ) not simultaneously zero, we
say the arc  (x,  y)  :  x = φ( t) ,  y  = ψ( t)  (a ≤ t  ≤ b )  is smooth (has a continuously
turning tangent).

Definition A contour is a continuous chain of a finite number of smooth arcs joined end
to end.

Examples

Contour Simple closed contour

S O



Length of an arc

Definition For a smooth arc, the length exists and is given by
____________________

L =    ∫
a

b √ [ φ ( t ) ] 2 +  [ ψ ( t ) ] 2 d t ,

providing  a  ≤ b.

Now, where does this strange formula come from? 
From Pythagoras’ Theorem, the length  ∆ s of a small portion of
the arc is given by    

______________

∆ s  =  √ [∆ x]2 + [∆ y]2 .

Dividing through by ∆ t gives
–––––––––––––––

∆ s = ∆ x2
+ ∆ y 2

.∆ t         √ ∆ t   ∆ t 

Integrating this expression with respect to t gives the required result.

Note It can be shown that this formula is independent of the choice of parameter used.

∆s

∆x

∆y



QUIZ 5.1AQUIZ 5.1A

1. The function  φ (F)   =  ∫
a

b F is a linear function.

(a) True ; (b) False .

2. If  a ≤ b, then  ∫
a

b | F |  ≤ | ∫
a

b F |.

(a) True ; (b) False . 

3. A smooth continuous arc is a contour.

(a) True ; (b) False . 

4. If C is a contour, then  C must be a smooth continuous arc.

(a) True ; (b) False . 

1. True: follows from 
the Properties.

2. False: the second 
inequality should be 
reversed.

3. True: this is a special 
type of contour.

4. False: a contour need
not be smooth.

x



QUIZ 5.1BQUIZ 5.1B

We show | ∫
a

b F |   ≤ ∫
a

b |  F |    (a ≤ b ) .  

By definition,  ∫
a

b F dt is a complex number.  So we can set  {  1 .  } =  ∫
a

b F dt .

By Property (2),   r0 =   {  2 .  } . Each side is real, and when a complex number is real, it
is the same as its real part.    So by Property (1), r0 =   {  3 .  } .

But  Re ( F cis  (–θ 0 ))  ≤ {  4 .  } =   | F | . | c is  (–θ 0 ) |  =  | F |.

So r0  ≤ ∫
a

b |  F |  dt , providing  a  ≤ b. Hence |  ∫
a

b F dt |   ≤ ∫
a

b |  F | dt .

Match the above boxes 1, 2, 3, 4 with the selections

(a) ∫
a

b F cis  (–θ 0 ) dt , (b) | F cis  (– θ 0 ) |  , 

(c) r0 cis  θ0, (d) ∫
a

b Re ( F cis  (–θ 0 ))  dt .

My solutions: 

1. 2. 3. 4.

1. (c) 2. (a)
3.  (d) 4. (b)

x



Line Integrals

Let  C be a contour extending from  z =  α to  z =  β, and set  z = x + iy.  

Thus for  z on C, x = φ( t) ,  y = ψ( t)  (a ≤ t ≤ b ) say, where  φ , ψ are continuous and
φ′,ψ′ are sectionally continuous.  

Also  t = a when z = α,  and  t = b when  z =  β.

Let  f ( t) = u( t) + iv( t) be a (sectionally) continuous function on  C (that is, the real
functions  u = u ( t) and  v = v( t) are sectionally continuous over  a ≤ t ≤ b . )

Definition We define
∫

C
f(z)  dz =   ∫

a

b f  [φ ( t)  + i ψ ( t)] . [φ ′ ( t)  + i ψ ′ ( t)]  dt .

Here, ∫
C

f(z)  dz is a line integral, or contour integral.

Note that the line integral exists because the integrand on right is sectionally continuous.



Expanding the Line Integral

Suppose  f(z)  = u + iv = u (φ ( t) ,  ψ ( t))  + iv(φ ( t) ,ψ ( t)) .

Then substituting f(z)  = u + iv in the defining expression

∫
C

f(z)  dz =   ∫
a

b f  [φ ( t)  + i ψ ( t)] . [φ ′ ( t)  + i ψ ′ ( t)] dt ,

gives

∫
C

f(z)  dz =  ∫
a

b (uφ ′ – vψ ′ )dt +  i ∫
a

b (uψ ′ + vφ ′ )dt ,

or simply

∫
C

f(z)  dz =  ∫
C

(u dx – v  dy)   +  i ∫
C

(u dy + v  dx) .       (*)

Note In summary, ∫
C

f(z)  dz =  ∫
C

(u + iv)(dx + i  dy) .

Thus by (*) we have expressed the complex line integral in terms of two real line integrals.



Properties of the Line Integral

1. ∫
β

α
f ( z ) d z   =   –  ∫

α

β
f ( z ) d z (taken over the same contour).

2. ∫
α

β
kf ( z ) d z =  k ∫

α

β
f ( z ) d z (k ∈ C, constant).

3. ∫
α

β
[ f(z)  + g (z)]  dz = ∫

α

β
f ( z ) d z + ∫

α

β
g ( z ) d z .

4. If  C1 is a contour (with parameter t from)  α to  β,  C2 a contour from  β to  γ, and   

C =  C1 ∪ C2 a contour from  α to  γ,  then   ∫
C

f ( z )  =   ∫
C 1

f ( z )  +   ∫
C 2

f ( z ) .

5. If  C has length  L and | f (z) |   ≤ M on  C,  then   | ∫
C

f ( z ) d z |  ≤ ML .

Properties (2) and (3) express the linearity of the integral.

Properties (1) to (4) follow easily from known properties of the real integral.



Proof of Property 5

Proof We use Property 5 of the Definite Integral:

| ∫
a

b F |   ≤ ∫
a

b |  F |    (a ≤ b )  (*)

Now,

| ∫
C

f (z)  dz |  =  | ∫
a

b f  [φ ( t)  + i ψ ( t)] . [φ ′ ( t)  + i ψ ′ ( t)] dt  | (a ≤ b)

≤ ∫
a

b | f  [φ ( t)  + i ψ ( t)] . [φ ′ ( t)  + i ψ ′ ( t)] | dt  (by inequality (*))

≤ M ∫
a

b | φ ′ ( t)  + i ψ ′ ( t) | dt ( since | f (z) |  ≤ M )

___________________
=  M ∫

a

b √(φ ′ ( t))2 +  (ψ ′ ( t))2 dt

=  ML . V



Line Integral Example I

Line  OB has equation  x =  2y.  

Taking  y as parameter we obtain the set 
of points (2y ,  y)  (0  ≤ y ≤ 1) .

Now,  z2 is continuous and on  C1,

z2 =  (x2 –  y2)  + 2 ixy = 3y2 + 4y2i ,

dz = dx + i  dy = (2 + i)  dy [strictly (φ ′ (y) + i ψ ′ (y)) dy].

Hence

I1 =   ∫
0

1
(3y2 + 4y2i) (2 + i)dy =  (3 + 4i)(2 + i) ∫

0

1
y2 dy = 1

3 . (2 + 11 i).

Find  I1 =   ∫
C 1

z2 dz, where  C1 is the illustrated path  OB.

xO

y
B(2, 1)

C1



Line Integral Example II

Now

I2 =   ∫ OA z2 dz +  ∫ AB z2 dz

=  ∫
0

2
x2 dx +  ∫

0

1
[ (4  – y2)  + 4 iy] i  dy

= 8
3 +  [4  – 1

3 + 2 i]  

= 1
3 (2 + 11 i) .

Find  I2 =   ∫
C 2

z2 dz, where  C2 is the illustrated path  OAB.

xO

y
B(2, 1)

A

C2

Points on  AB are  (2 ,  2  + iy),
with  0  ≤ y ≤ 1.



Some interesting questions 

Question 1 We see that in the previous examples, the integral from  O to  B is the same
for both contours. Is this a coincidence? Or does it always happen? If it doesn't always
happen, when does it?

We can express this in a different way. We see that

∫OABO =   ∫OAB +   ∫BO  =   I2 –  I1 =  0.

So we ask: Is the integral around a closed contour always zero?

Question 2 We observe that if we forget the contour altogether, and simply integrate,
then we obtain:

z3

3
|
| 0

2 + i
=  13 (2 + i) 3 =  13 (2 + 11 i )

again!

Does this always happen?   This would say that   ∫
C

f  is independent of the contour  C.



Line Integral Example III

Now  C3 is the contour of points 

{ (x, y ) | x =  cos θ,   y =  sin θ,   π  ≥  θ  ≥ 0 }

and dz =  (– sin θ +  i cos θ ) dθ.

Hence we have
I3 =   ∫

C 3

z
–

d z

=  ∫
π

0 (cos θ –  i sinθ )(– sin θ +  i cos θ ) dθ

=  ∫
π

0 i d θ  

=  – π i.

Find  I3 =   ∫
C 3

z
–

dz, where  C3 is the illustrated red path.

xO

y
C

3



Line Integral Example IV

In this case we obtain

I4 =   ∫
C 4

z
–

d z

=  ∫
π

2 π i d θ  

=  + π i.

We observe that this is different from  I3 !

And if we set  C =  (– C3) ∪ C4, then  ∫
C

z
–

dz =  2 π i. (not  0) where the contour  C is

traversed in an anti-clockwise direction.

Note On the contour C, |z | 2 = zz
–

= 1. That is,  z
–

= 1/z . This suggests that there might

be some special significance about the singular point  z =  0  being inside the contour.

Find  I4 =   ∫
C 4

z
–

dz, where  C4 is the illustrated red path.

xO

y

C
4



Line Integral Example V

We make use of Property 5:

|  ∫
C

f ( z ) dz |   ≤ ML .

In this case, the length  L =  √ 2 . 

Also, the contour  C has equation  y =  1 – x (0  ≤ x ≤ 1).

Therefore for  z on  C
|  z4 |   =  (x2 + y2)2 =  [x2 + (1 – x)2 ]2 = [2x2 – 2x + 1]2.

That is, | z4 | =  [2 (x – 1
2)2 + 1

2]2 ≥ 1
4.  

(In retrospect, this is obvious from the figure!  Why?)

Hence | 1/ z4 | ≤ 4  and  |  I |   ≤ 4√2 .

Without evaluating the integral, find an upper bound for | ∫
C

d z /z 4 | on the given contour C.

xO

y

C
i

1



QUIZ 5.2QUIZ 5.2

1. If  C is the line segment from  O to  1 + i, 
then  ∫

C
2z  dz  =  .

2. If  C is the line segment from O to 1, followed 
by the line segment from  1  to  1 + i,  then 

∫
C

2z dz = .

3. If  C is the upper half, from  π to  0,  of the circle 
| z |  =  √ 2,  then  

∫
C

z– dz = .

4. If  C is the circle centre  O, radius  k and fully 

traversed, then |  ∫
C

1/z dz | ≤ 2π .

(a) True (b) False .

1. 2i.   Set  z = x + iy
and parameterize 
segment etc.

2. 2i. As for Q1 – but see 
Cauchy’s Theorem, 
next section.

3. The answer is  – 2π i .

4. True, since 

|  ∫
C

1/z dz | ≤ 1/k . 2π k.

x



Green’s Theorem 

Let  R be a closed region in the real plane made up of a closed contour  C and all interior
points.

If  P(x,  y) ,  Q(x,  y) are real continuous functions over  R and have continuous first
order partial derivatives, then Green’s Theorem says:

∫
C

(P dx + Q dy)  =  ∫ ∫ R (Qx – Py ) dx dy

where C is described in the anti-clockwise direction.

Outline Proof

∫ ∫ R Py dxdy =  ∫
a

b [ ∫
l ( x )
u ( x ) Py dy] dx

=  ∫
a

b [ P(x,  u(x) )  –  P(x ,  l(x)) ] dx

= – ∫
C

P dx etc .
xO

y

a b

R

y = u(x)

y = l(x)



Cauchy’s Theorem

Now consider a function  f (z)  = u (x, y)  + iv (x, y) which is analytic at all points with-
in and on the closed contour  C, and is such that f ′( z ) is continuous there. 
We show that   ∫

C
f (z) dz =  0.

The given conditions tell us that  u, v and their first order partial derivatives are
continuous. Now

∫
C

f ( z ) dz =   ∫
C

(u dx – v  dy)   +  i ∫
C  

(u dy + v  dx)

=   –  ∫ ∫ R (vx + uy ) dx dy +  i ∫ ∫ R (ux – vy ) dx dy

=   0, 

using Green’s Theorem and the Cauchy-Riemann equations.

This result was discovered by Cauchy.



Examples and the Cauchy-Goursat Theorem

As a consequence of Cauchy’s Theorem we have the following:

Goursat showed that Cauchy’s condition  ‘ f ′(z ) is continuous’ can be omitted. This
discovery is important, because from it we can deduce that all derivatives of analytic
functions are also analytic. But, proving this stronger result takes much more effort!

Theorem 5.1 (Cauchy-Goursat Theorem) If a function  f is analytic at all points interior
to and on a closed contour  C, then 

∫
C

f (z)  dz =  0 .

Examples ∫
C

dz = 0,  ∫
C

z  dz = 0,  ∫
C

z2 dz = 0,

for all closed contours  C, since these functions are analytic everywhere and their
derivatives are everywhere continuous.



Cauchy -Goursat Theorem, Example I

Now the integrand  z
2
/(z – 3) is analytic everywhere except at the point  z = 3. 

This point lies outside the circular disk  | z |  ≤ 1.  

Hence by the Cauchy-Goursat Theorem

∫
C

z2
dz  =  0.z – 3

Most of the useful applications of the Cauchy-Goursat Theorem are as yet beyond us, but
the next example gives us a glimpse of what can be done.

Find   ∫
C

z2
dz where the contour is the unit circle  | z |  =  1.z – 3



Cauchy-Goursat Theorem, Example II

[We note that Laplace's integral can be evaluated by writing

∫ e – x 2
d x ∫ e – y 2

d y   =   ∫ ∫ e – x 2– y 2
d x d y

and expressing this second integral in polar coordinates.]

We integrate  f ( z ) = exp (–z2) around the rectangle  C defined by  | x | ≤ R ,  0  ≤ y ≤ b .

Later we let R → ∞ .

Since  exp (–z2)  is entire, the Cauchy-Goursat Theorem applies, that is,  ∫
C

e – z 2
d z  =  0 .

[Continued]

Assuming Laplace’s Integral: 

∫– ∞
∞

e – t 2
d t  =  √ π

show that

∫ 0

∞
e – x 2

c o s 2 b x  d x =  √ π
2 e – b 2

.



Example II, continued
Hence

∫
– R

R
e – x 2

d x   +  ∫
0

b
e – R 2 + y 2 – 2 i Ry i d y  –  ∫

– R

R
e – x 2 + b 2 – 2 x b i d x  –  ∫

0

b
e – R 2 + y 2 + 2 i Ry i d y  =  0 .

Taking out the factor  e – R 2 from the second and fourth integrals and letting  R → ∞, we get
a zero contribution  (using the | ∫ dy | ≤ ML formula).  Hence letting R → ∞,

∫
– ∞

∞
e – x 2 + b 2 – 2 x b i d x   =   ∫

– ∞

∞
e – t 2

d t   =  √ π  (given) .

Equating the real parts,

e b 2∫
– ∞

∞
e – x 2  

c o s  2 b x d x   =  √ π
or

∫
0

∞
e – x 2  

c o s  2 b x d x   =  √ π
2 e

– b 2

since the integrand is even.

xO

yC

–R R

b



Indefinite Integrals 

Let  f be analytic in  D and  z 0, z ∈ D. Then for contours  C1, C2 lying in  D, joining

points  z 0, z, and being traversed from z 0 to z,

∫
C 1

f   –   ∫
C 2

f   =  0 , by the Cauchy-Goursat Theorem.

Theorem 5.2 (‘Primitive’ Theorem) For all such paths in the domain  D

F ( z )  =  ∫
z 0

z
f ( z ′) d z ′

has the same value, and  F ′(z)   =  f (z) .

Note This will allow us to evaluate some line integrals by straight integration. We shall
see that the name of the theorem comes from the fact that the function  F satisfying
F ′(z)   =  f (z) is called a primitive of  f.



Proof of the ‘Primitive’ Theorem

Proof Let  z + ∆ z be a point in  D. Then

F (z + ∆ z)  –  F ( z )  =  ∫
z 0

z +∆z
f ( z ′) d z ′ – ∫

z 0

z  f ( z ′) d z ′  = ∫
z

z +∆z
f ( z ′) d z ′,

where since  ∆ z is very small, we may take the path from  z to  z + ∆ z to be a line
segment.

Now clearly on the segment,  ∫
z

z +∆z
d z ′ =  ∆ z. So 

f ( z )   =   f ( z )
∆ z ∫

z

z +∆z
d z ′   =     1  

∆ z ∫
z

z +∆z   
f ( z ) d z ′.

Then

F (z  + ∆ z) 
∆ z

  –  F ( z ) –  f ( z )    =    1  
∆ z ∫

z

z +∆z   
[ f ( z ′)  –  f ( z ) ] d z ′.

[Continued]



Proof of the ‘Primitive’ Theorem (Continued)

Now f is continuous at  z.   Hence for all ε > 0,  there exists  δ > 0 :

| ∆ z |  <  δ ⇒ |  f (z ′ )   –   f (z)  |  <  ε .

Hence, when  | ∆ z |  <  δ ,

| F (z  + ∆ z) 
∆ z

 –  F ( z ) –  f ( z ) | ≤   1  
| ∆ z | | ∫

z

z +∆z   
[ f ( z ′) – f ( z ) ] d z ′ |

≤   1  
| ∆ z | . ε . | ∆ z | = ε ,

(using Property 5).

That is,
lim

z → z0 

F (z  + ∆ z) 
∆ z

 –  F ( z ) =   f ( z )

and  F ( z ) exists at each point of  D,  and  F ′( z )  = f ( z ) .



Notes on the ‘Primitive’ Theorem

We say that  F is an indefinite integral or primitive (anti-derivative) of  f and write      

F ( z )  =  ∫ f ( z ) d z .

That is,  F is an analytic function whose derivative is  f ( z ) .

Since

∫
α

β f ( z ) d z   =   ∫
z 0

β f ( z ) d z   –  ∫
z 0

α f ( z ) d z   

=  F ( β ) –  F ( α ) ,

we can use this as a means of evaluating line integrals.

(All paths here are assumed to be in the domain  D.)



QUIZ  5.3QUIZ  5.3

1. If  f(z)  = z / (z2– 4) , and  C is the circle  
| z – i | = 1  traversed positively, 

then  ∫
C

f ( z ) d z  =

2. If in Q1   f ( z )  =  L o g ( z + 1 ) ,  

then  ∫
C

f ( z ) d z  =

3. If in Q1   f ( z )  = 1/(z  –  i ) ,  

then   ∫
C

f ( z ) d z =

4. If  C and  f are as in Q1, then the integrals from  
O to  2 i along either semicircle of  C are equal.

(a)  True ; (b)  False .

©

1. 0, since  z =  ± 2  lie 
outside C.

2. 0, since the cut lies 
outside C.

3. 2πi.  Substitute the arc 
coordinates and evaluate.

4. True, since  f is analytic 
inside C.

x
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