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The ‘Primitive Theorem’ : Example 1

The function  f ( z )  =  z 2 is entire. 

It has primitive  F(z )  = 1
3 .z 3.

So by our theorem,
∫
0

i + 1 z 2 dz  =  1
3 .z 3 ]

0

i + 1  

=  1
3 (1 + i)3,

along any contour joining  0  and  1 + i.
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The ‘Primitive’ Theorem: Example II

We recall that  ∫
C 1

1/z dz =  – π i, ∫
C 2

1/z dz =  π i,  where  C1, C2 are upper and lower
semicircles of the unit circle. Now we can easily choose our domain  D to avoid  O and
contain the given contour Ci. Mysterious question! So why does the difference occur? 

The answer is that for the different contours, we need different
primitives!

For  C1, we might choose as primitive 

log z =  ln  |  z |  +  i arg z (–π /2 < arg z < 3π /2) .  

Then
∫

C 1

1/z dz =  log z  ] 1

–1  
=  – π i.

But for  C2, our choice of primitive could be 

log z =  ln  |  z |  +  i arg z ( π /2 <  a r g  z  <  5π /2)
and

∫
C 1

1/z dz =  log z  ] 1

–1   
=   2π i – π i  =  π i.
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Simply and Multiply Connected Domains

Defintion A simply connected domain  D is an open connected region such that every
closed contour within it encloses only points of  D. Otherwise the domain is multiply
connected.

Examples

The Cauchy-Goursat Theorem has been stated for simply connected domains.

That is,  if  f ( z ) is analytic throughout a simply connected domain D, then for every
closed contour  C within  D,   ∫

C
f ( z ) =  0.

Question IS the theorem still true for multiply conencted domains?

   Simply
 connected

Multiply connected



Extending the Cauchy-Goursat Theorem

It will be useful to extend the Cauchy-Goursat Theorem to certain multiply-connected
domains. Consider the illustrated (red) region  D and suppose that f ( z ) is analytic over
this (closed) region.

We assert that  ∫
B

f ( z ) dz =  0, where  B is the total directed
boundary (C ∪ C1 ∪ C2), with all components traversed so that
the region is on the left.

This is easy to prove. 

We insert the indicated green links partitioning  D into two
simply-connected domains. We apply the Cauchy-Goursat
Theorem to the boundaries of the left and right regions,
obtaining two line integrals having value 0. Putting the two
circuits together, the integrals along the introduced links
cancel, giving the required result.
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Multiply-Connected Domains: Examples

Example 1 ∫
B

    d z      =  0  
z 2 ( z 2 +  9 )

where  B is the  two-circle contour shown.

For, the integrand has singularities  0, – 3i,  and is analytic
over the enclosed domain.

Example 2 Find   ∫
T

d
z
z where T is the illustrated triangle.  

Now  1/z is analytic inside  T, except at  O.  Consider the
unit circle  C, centre O. Since  1/z is analytic in the domain
bounded by  C and  T, noting the direction of  C, 

∫
C

– ∫
T

=  0,   that is,    ∫
C   

=   ∫
T

.

Hence it is sufficient to evaluate the integral around C.
So although we have not solved this problem, we have
simplified it.
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The Cauchy Integral Formula

Theorem 5.3 Let  f be analytic everywhere within and on a closed contour C. If  z 0 is
any point interior to C, then

f (z 0)  =    1  ∫
C

f ( z ) dz
2π i   z  –  z0

where the integral is taken in the positive sense around C.

Notes 

(1) The formula is the Cauchy integral formula. It is remarkable because it gives the
value of  f at  z0 in terms of the values of  f on the boundary. That is, for an analytic
function, fixing the boundary values completely determines  f at points inside C. 

(2) The theorem can also be used to evaluate certain integrals.

∫
C



Cauchy Integral Formula Example

Evaluate 

∫
C  

 z             dz
(9 – z2)(z  + i)

where C is  | z |  =  2, transversed once in the anticlockwise
direction.

Take f(z)  = z  / (9 – z2) , z0 =  – i.  Then we observe that
f(z) is analytic in and on C.  So using the Cauchy integral

formula,

I  =    f (z 0)  = ∫
C

f ( z )   dz
z – (–i)

=  2π i .  f ( z 0 )

=   2π i .   – i
10

= π
5 .
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Proof of the Cauchy Integral Formula (I) 

Let  C0 be a circle centre  z0,  radius  r0 interior to C.  Now the function f ( z ) / ( z – z 0 ) is
analytic at all points in and on C except at  z = z0, in particular in the region  D lying
between  C and  C0.  Hence as in Example 2 above

∫
C

f ( z ) dz     =  ∫
C

f ( z ) dz  
z  –  z0                    o   z  –  z0

where both contours are traversed in the positive direction. 

Hence

∫
C

f ( z ) dz    = ∫
C

f ( z 0)  + f ( z )  –  f ( z 0) dz––––––                       –––––––––––––––––––
z – z0                 o z  –  z0                                         

= f(z 0)  ∫
C

d z + ∫
C

f ( z )  –  f ( z 0) dz  ––––––               ––––––––––––
o z  –  z0              o z  –  z0  

or I =  f(z0)  I1 +  I2 say.
[ Continued ]
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Proof of the Cauchy Integral Formula (II) 

For  z on  C0 ,  we can write  z  –  z 0 =   r 0 c i s θ =   r 0 e x p ( i θ) .
Hence  dz =  i r0 exp( iθ) dθ ,  and

I1 =  ∫
C

d z =   i ∫
0

2 π
dθ  =  2π i   for every  r0 >  0.

o z  –  z0

Also, f is continuous at  z 0 , so given  ε > 0, there exists  δ > 0 : 
| z –  z 0 |   ≤ δ ⇒  |  f(z)  –  f(z0) |   <   ε .

Take  r0 =  δ .  Then  | z – z0 |  =  δ ,  and

| I2 |    = ∫
C

f ( z )  –  f ( z 0) dz    ≤ ε/δ  . 2π δ  =  2π ε .––––––––––––z – z0

Hence I2 can be made arbitrarily small by taking  r0 sufficiently small.  Since  I and I1 are
independent of  r0,   I2 must be too. Therefore  I2 =  0, and 

I =   f ( z 0 )  I 1 =   2 π i  f ( z 0 ) .

�



Derivatives of Analytic Functions

Theorem 5.4 Suppose  f is analytic inside and on a closed contour C, and  z 0 lies inside
C. Then

f ′(z 0)   = 1 ∫
C

f ( z )  dz .
2π i (z  –  z0)2

That is, we can take the Cauchy integral formula and formally differentiate with respect
to  z 0 .

Proof We omit this proof. It is not unlike the proof of the Cauchy integral formula.

Note We can similarly prove:
f ′′(z 0)   = 2! ∫

C

f ( z )  dz ,
2π i (z  –  z0)3

.  .  .  .

f ( n ) (z 0) =   n! ∫
C

f ( z )    dz .
2π i (z  –  z0)n + 1

�
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A Glimpse and an Example

One of most beautiful parts of course on Complex Functions is the development ofTaylor
series. We look at this a little later, but for now, note the appearance here of the terms

f ( n ) ( z 0 ) / n ! .

(a) Take f(z)   =  cos  z , z 0 =   0 (within C ).  Since  cos z is entire,

I (a) =   2π i .cos  z0 = 2π i (the Cauchy integral formula).

(b) Take f ( z )  =  s in  z , z 0 =  0 , f ′ (z)  = cos z . Then

I (b)  =  2π i . f ′ (z0)  =  2π i cos 0 = 2π i (the Derivative formula).

Example Evaluate (a)   ∫
C

c o s  z / z  d z , (b)   ∫
C

s i n  z / z 2 d z ,  where C is the
unit circle  | z |  =  1  taken in the anti-clockwise direction.



Another Example

Let us take  f(z) =  1  in Cauchy’s integral formula and the Derivative formulae, and let C
be any contour about z 0 .

(a) By Cauchy’s integral formula, we have
1  ∫

C

d z  =  1.
2π i    z  –  z0

This can be rewritten as

∫
C

d z  =  2π i .
z  –  z0

(b) By the Derivative formulae,
  n!  ∫

C

d z     =  0.
2π i    (z  –  z0 )n+1

This can be rewritten as

∫
C

d z     =   0,  n = 1, 2, 3, ....
(z  –  z0 )n+1

CD



QUIZ 5.4QUIZ 5.4

1. If C is the (positive) contour  | z |  =  4,  then

∫
C

  2z d z  =  
z  –  2

2. If C is the (positive) contour  | z |  =  1,  then 

∫
C

  2z d z  =  
z  –  2

3.  If C is the (positive) contour  | z |  =  4,  then 

∫
C

  2z d z  =  
(z  –  2)2

4.  If C is the (positive) contour  | z |  =  1,  then 

∫
C

  2z d z  =  
(z  –  2)2

1. 8π i , by the 
integral formula.

2. The answer is 0;
the integrand is 
analytic inside C.

3. The answer is 4 π i.

4. As for Q 2.
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Corollary of the Derivative Formulae

If a function  f is analytic at a point, then by the Derivative formulae, its derivatives of all
orders are also analytic functions at that point.

Now if f(z)  = u + iv , then

f ′(z)   =  ux + ivx =  vy – iuy.

So if  f ′(z  ) is analytic, then  ux, vx, uy, vy are all differentiable and so continuous.

In the same way, using  f ′′(z) etc., we see that all partial derivatives of  u, v of all orders
are continuous at any point where f(z) is analytic. Thus we have:

Corollary If f = u + iv is analytic at a point, then all partial derivatives of  u, v of all
orders are continuous there.

Note Cauchy’s integral formula and the Derivative formulae easily extend to the bound-
aries of multiply connected domains.



A Useful Lemma

Here is an interesting little result.

Lemma If  f is analytic, and  | f |  is constant, then  f is constant.

Proof Let  f  =  u + iv.  Then we are given that  u2 + v2 =  c .
So

2uux + 2vvx =  0 ,  2uuy + 2vvy =  0 ,
leading to

ux /uy
=  vx /vy

.

Also, by the Cauchy-Riemann equations,  ux = vy,  uy = –vx.

So, eliminating the  u terms, we get   vx
2 + vy

2 =   0
and so vx = 0 = vy = ux = uy.

Hence f ′ (z)   =  0 and so f ( z ) is constant.



Maximum Modulus 

Let  f be analytic and not constant on the open disk  | z  –  z0 |   <   r 0, centred at  z0.
If  C is any circle  | z  –  z0 |  =  r (0 < r < r0) then by the Cauchy integral formula,

f (z 0)  =    1  ∫
C

f ( z ) dz     (*)
2π i   z  –  z0

Path  C is in the positive sense and parametrizes: z(θ)  =  z0 +  r exp(iθ ) (0 ≤ θ ≤ 2π ). 
So (*) becomes 

f (z 0)  =    1  ∫ 2π f ( z 0 +  re i θ ) dθ . 
2π i    0

This means that the value at the centre is the arithmetic mean of the values on the circle. 
Thus

| f (z 0) | =    1  | ∫ 2π f ( z 0 + re i θ ) dθ | ≤ 1  ∫ 2π | f ( z 0 + re i θ ) | dθ
2π i     0 2π i     0

(0 ≤ r < r0). (+)

Now suppose | f ( z 0 ) | is a maximum. Then  | f(z) | ≤ | f(z 0) | for all  z : | z – z 0| < r0.
[Continued]



Maximum Modulus Principle

So, 1  ∫ 2π | f ( z 0 + re i θ ) | dθ ≤ | f ( z 0 ) | (0  ≤ r <  r0). (+)
2π i    0

Combining the two inequalities (+), we have 

| f (z 0) | = 1  ∫ 2π | f ( z 0 + re i θ ) | dθ
2π i   0

From this we can show that, | f(z) |   =   | f(z0) |  for all  z : | z – z0 |  <  r0.

For, write the above equation as 

∫ 0

2π | f ( z 0 + re i θ ) – f ( z 0 ) | dθ =  0.

Since the integrand is non-negative, we deduce it must be  0  for all  z : | z – z0 |  <  r0.
This shows that  f ( z )  =  f ( z 0 ) for all  z in the disk.  So  f is constant in the disk.
This is a contradiction.

Theorem 5.5 (Maximum Modulus Principle) If  f is analytic and not constant in the
interior of a region then | f ( z ) | has no maximum value in that interior.



Some Observations

We deduce that if a function  f is continuous in a closed bounded region  R and is analytic
and not constant in the interior of  R, then | f(z) | assumes its maximum value on the
boundary of  R and never in its interior.

Now let  f be analytic in and on the circle C0 defined by | z –  z 0 |  =  r 0 , and traversed in
a positive sense. Then by the Derivative formulae

f ( n ) (z 0) =   n! ∫
C

f ( z )    dz      n =  0, 1, 2, ... .
2π i o (z  –  z0)n + 1

If  | f ( z ) |  ≤ M on  C0,  then using the ‘ML’ bound,

| f ( n ) (z 0) |   ≤ n! M / r0
n (n = 0, 1, 2, ...),

and for  n =  1
| f ′ (z 0) |   ≤ M / r0

.



Liouville’s Theorem

The preceding observations lead to the following theorem.

Theorem 5.6 (Liouville) If  f is entire and bounded for all values of z in the complex
plane, then  f ( z ) is constant.

Proof By assumption  | f ( z ) |  ≤ M for all  z.

Therefore, as before, 

| f ′ (z0)  |  ≤ M / r0

for each  z0 in the plane, and for any positive  r0,  no matter how
large.

It follows that  f ′ (z0)  =  0.  But  z0 is arbitrary.  

Thus for all  z , f ′ (z)  =  0,  and so   f ( z ) =  constant.

L



The Fundamental Theorem of Algebra

Theorem 5.7 (Fundamental Theorem)  Any polynomial 

P(z)  = a0 + a1z + . . .  +  an zn (an ≠ 0) 

where  n ≥ 1 , has at least one zero. That is, there is at least one point  z1 :  P( z1)  = 0.
It is curious that this important result has no easy algebraic solution.

Proof Suppose  P(z)  ≠ 0 for any  z . Then f(z) =  1/P(z ) is entire. 
In fact  f (z ) is also bounded. For  f is continuous and so bounded in any closed disk
centred at the origin.  Further, if  R is large and  z is exterior to the disk  | z |  ≤ R , then

|  f(z) |  =  |  P
1
(z ) | ≈ Rn

1 (or worse!)

so  f is bounded for all values of  z in the plane. (We can tidy up this last argument, but
the idea is that when  | z |  is large, so is  | P(z) |.)

Now by Liouville’s Theorem, f ( z )  and so  P(z) is constant.
This contradiction shows that  P(z) has at least one zero.



Factorization of Complex Polynomials

Let  z 1 be the zero guaranteed by the Fundamental Theorem.
Then  

P ( z )  =  ( z –  z 1 ) Q ( z ) ,
where  Q(z)  is a polynomial of degree  n – 1. 
We deduce (by induction) that

P ( z )  =  c ( z –  z 1 ) ( z –  z 2 )  . . .  ( z –  z n ) .

Corollary Any polynomial of degree  n, where  n ≥ 1,  can be expressed as a product of
n linear factors.  That is,

P ( z )  =  c ( z –  z 1 ) ( z –  z 2 )  . . .  ( z –  z n ) .

where  c and the z k are complex constants.

You might like to compare this result with what happens for polynomials over the reals  R.

( ) ( ) ( ) ( ) ( )



QUIZ 5.5AQUIZ 5.5A

1. If  f  = u + iv is entire, then all partial derivatives of
u,  v are continuous everywhere.
(a) True ; (b) False .

2. If  f is analytic on  | z |  ≤ 1, and  f has maximum 6    
on this disk, then
(a) f(0) <  6 ; (b)  f(0) >  6 .

3. We can write any real, degree  n polynomial as the    
product of  n linear real factors.
(a) True ; (b) False .

4. We can write any real, degree  n polynomial as the    
product of  n linear complex factors.

(a) True ; (b) False .

1. True : follows from the
Derivative formulae.

2. (a)  The maximum 
cannot be attained at 
an interior point.

3. False : for example 
p (x)  = x2 + 1

4. True : it is true for all 
complex polynomials, 
of which the real 
polynomials 
form a subset. x



QUIZ 5.5BQUIZ 5.5B

Lemma If  f is analytic, and  | f | is constant, then  f is constant.

Proof Let  f  = u + iv. Then we are given that  { 1 }. So
{ 2 }, 2 u u y +  2 v v y =   0 , leading to { 3 }.

Also, by the Cauchy-Riemann equations,  u x =  v y ,  u y =  – v x .
So, eliminating the  u terms, we get  vx

2 + vy
2 =  0 and so  v x =  0  =  v y =  u x =  u y .

Hence { 4 } and so f(z) is constant.

Match the above boxes 1, 2, 3, 4 with the selections

(a) f ′ (z)  = 0 ; (b) ux /uy
= vx /vy

;
(c) 2uux + 2vvx = 0 ; (d) u2 + v2 = c .

My solutions: 

1. 2. 3. 4.

1. (d) 2. (c)
3.  (b)   4. (a)
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