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Convergence of series

A sequence z1,  z2,  . . .  ,  zn,  . . .  has limit z if for all  ε > 0  
there exists  N : n > N ⇒ |  z n – z |  <  ε .

That is, we can make  zn arbitrarily close to z by taking  n sufficiently large.
This definition is formally the same as for the real case. Of course, here the points of the
sequence lie in the complex plane, rather than on the real line. 

The limit, if it exists, is unique. 

We say the sequence converges to  z0 and write zn → z or lim n→∞ zn = z.

If there is no limit, we say that the sequence diverges.
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A First Convergence Theorem

Theorem 6.1 If zn = xn + iyn (n = 1,  2 ,  . . . ) and z  = x  + iy , then
lim n→∞ zn = z ⇔ lim n→∞ xn = x and lim n→∞ yn = y .

Proof
(⇒⇒ ) Given  ε > 0  there exists  N : n > N ⇒ |  xn + iyn – (x + iy)  |  <  ε .

Hence  n > N ⇒ |  xn – x |  <  ε and | yn – y |  <  ε .
i .e .  lim n→∞ xn = x and lim n→∞ yn = y .

(⇐ ) Given ε > 0  there exist N1, N2 :
n >  N1 ⇒ | xn – x |  <  ε /2 , n >  N2 ⇒ | yn – y | <  ε /2.

So  n > max (N1,  N2)  ⇒ | xn – x | +  |yn – y | < ε .

Now | xn + iyn – (x + iy) |  ≤ | xn – x |  +  | yn – y | <  ε .

So  lim n→∞ zn =  z .
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Infinite Series and Partial Sums

The expression 
z1 + z2 + z3 + . . .

is an infinite series.

The set 
SN =  z1 + z2 + . . .  +  zN

is a partial sum of the series.

If the sequence S1,  S2,  . . .  ,  SN,  . . .  converges to limit S we write  lim n→∞ zn = S,
and  S is the sum of the series.  In this cae we say that the infinite series converges.

The sum, when it exists, is unique. 

When a series does not converge, it diverges.



Convergence of Complex Series

Theorem 6.2 Suppose that  zn = xn + iyn (n = 1,  2 ,  . . . ) and  S = X + iY. 

Then
Σ
1

∞
z n = S ⇔ Σ

1

∞
x n = X and  Σ

1

∞
y n = Y.

Proof Let   SN = XN + iYN  denote the N th partial sum, 

where       XN =  Σ
1

N
x n and   YN =  Σ

1

N
y n .

Now

Σ
1

∞
z n =  S ⇔ lim N→∞ SN =  S ⇔ lim N→∞ XN =  X and lim N→∞ YN =  Y

by Theorem 6.1. 

Since  XN,  YN are the partial sums of  Σ
1

∞
x n  and  Σ

1

∞
y n ,  the result follows.

Σ



Remainder and Power Series

In establishing that a given series has sum  S,  we define the remainder after  N terms to
be:

R N = S  –  S N .

Since  | S  –  S N |  =  | R N  –  0 |, we have  S N → S iff R N → 0 as N → ∞. 

Hence, a series converges to sum S ⇔  the sequence of remainders converges to 0.

We shall be particularly concerned with power series.
A power series is a series of the form

a 0 +  Σ
1

∞
a n(z  –  z0)n = Σ

0

∞
a n(z  –  z0)n

where z 0 and the an are complex constants, and z is any number (variable) in a stated
region. 

We will use the notation  S (z ) ,  SN(z ) ,  RN(z ) for the sum, partial sum and remainder
respectively.



QUIZ 6.1AQUIZ 6.1A

1. If  zn = 2 + i /n then sequence  (zn)  converges.
(a) True ; (b) False . 

2. If  zn = xn + iyn and  Σ zn converges, 
then  Σ xn must converge.
(a) True ; (b) False . 

3. If  zn = xn + iyn and  Σ xn converges, 
then  Σ zn must converge.
(a) True ; (b) False . 

4. If  Σ z n = S , then  Σ Re (z n )  = Re (S ) .
(a) True ; (b) False . 

1. True.  The limit is 2.

2. True.  This is Theorem 6.2.

3. False.  A counter-example 
is (1/n2 + in) .

4. True.  This is Theorem 6.2 
again.
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QUIZ 6.1BQUIZ 6.1B

Theorem 6.1 If zn = xn + iyn (n = 1,  2 ,  . . . ) and z  = x  + iy , then
lim n→∞ zn = z ⇔ lim n→∞ xn = x and  lim n→∞ yn = y .

Proof
(⇐ ) Given ε > 0  there exist N1, N2 :
{ 1 } ⇒ | xn – x |  <  ε /2 , n >  N2 ⇒ { 2 }.

So  { 3 } ⇒ | xn – x | +  |yn – y | < ε .

Now | xn + iyn – (x + iy) |  ≤ { 4 } <  ε .

So  lim n→∞ zn =  z .

Match the above boxes 1, 2, 3, 4 with the selections
(a)  n > N1,  (b)  n > max(N1,  N2) ,  
(c)  |  yn – y |  <  ε /2 ,  (d)  |  xn – x |  +  |  yn – y | .

My solutions: 1. 2. 3. 4.

1. (a) 2. (c)
3. (b) 4. (d) x



Taylor Series 

Theorem 6.3 (Taylor) Let f be analytic everywhere
inside the circle  C0 : | z – z0 | =  r0. Then at each point  z
inside C0

f(z) = f(z0) +  f ′(z0)(z – z0) + f ′′(z0)/2! .(z – z0)2 +
... + f (n)(z0)/n! .(z – z0)n + ... .

That is, the power series converges to f(z) when  
| z – z0 |  <  r0.

Notes 

(1) This is the Taylor series expansion about point z0.

(2) If all terms are real, we get the real Taylor series.

(3) The proof of Taylor’s Theorem we give is remarkably ‘natural’, and is one of the
rewards in our study of complex functions.
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Proof of Taylor’s Theorem (I) 

Proof Let  z be any fixed point inside  C0 and set  |  z – z0 |   =   r ( so r <  r0 ).
Let  C1 be a circle    centred at  z0 and having radius  r1 :  0  <  r <  r1 <  r2.  Let  ζ (zeta)
be any point on this circle;  i.e. | ζ –  z0 |  =  r1.

Now z lies inside  C1, and  f is analytic in and on C1, so by the Cauchy integral formula

f (z)   =   1  ∫
C

f ( ζ) dζ____        
2π i ζ – z

where C1 is taken in the positive sense. Now
    1     =               1              =      1      .         1         
ζ – z     (ζ – z0) – (z – z0)       (ζ – z0)   1 – (z – z0)

(ζ – z0)
Also for any complex  c ≠ 1,

    1    =  1 + c + c2 + ... + c N– 1 +   c N

1 – c                                                          1 – c [ Continued]



Proof of Taylor’s Theorem (II)
So

    1          1    1  + z – z0 + ... + ( z – z0)
N–1 +

(z – z0 )N

=                      [ ζ – z0 ]ζ – z ζ – z0                 ζ – z0                      ζ – z0              

______________

1 – (z – z0 )ζ – z
Hence

f(ζ)   = f(ζ)   + f(ζ)   (z – z0) f(ζ)    (z – z0)N–1 + f(ζ)  (z – z0)N
+ . . .  + 

ζ – z        ζ – z0          (ζ – z0)2                                          (ζ – z0)N                                   (ζ – z ) (ζ – z0)N

We next integrate each term anticlockwise around C1, divide by 2π i , and substitute the
Cauchy integral formula and the Derivative formulae:

f (n )(z0)   = n !   ∫ C

f ( z )  dz ,  n =  0, 1, 2, ... .
2π i (z – z0)n+1

[Continued]



Proof of Taylor’s Theorem (III)

So f (z)  = f(z 0) + f ′(z 0) (z – z 0) + ... + f (N–1)(z 0) (z – z 0)N–1  + RN(z)_______
(N – 1)!

where RN(z)  = (z – z0)N ∫
C 1

f(ζ) dζ (*)______          ____________
2π i             (ζ – z)(ζ – z0)N

Recall that | z – z0 |  = r,  | ζ – z0 | = r1 (> r),
and | ζ – z |  ≥ | ζ – z0 | – | z – z0 |  =  r1 –  r.

Thus if M denotes the maximum value of  | f(ζ) |  on  C1,  (*)  ⇒

| RN(z) | ≤ rN
. M .  2π r1 = Mr1 r N

.___    ________         _____   ( _ )2π (r1 – r) r1
N (r1 –  r)    r1

Since  r/r1
<  1,   lim n → ∞ RN(z) =  0.

So for each  z interior to  C0, the Taylor series for  f converges to f(z) .
THE

END!



Special Case and Observations

Let us seek the Maclaurin expansion for f(z)  = e z. 

We have f ( n ) ( z )  =  e z , so f ( n ) (0)  = 1. 

Also,  e z  is analytic for all  z,  so

ez =  1  + z + z2/2! + . . .  +  zn/n ! + . . .   =   Σ 0

∞ zn/n ! , |z |  <  ∞ .
Similarly

sin z =  z – z3/3! + z5/5! – . . .  , |z |  <  ∞ .

cos  z =  1  –  z2/2! + z4/4! – . . .  , |z |  <  ∞ .

s inh z =  z + z3/3! + z5/5! + . . .  , |z |  <  ∞ .

cosh z =  1  + z2/2! + z4/4! + . . .  , |z |  <  ∞ .



Geometric Series

Let us try to find the Maclaurin series for the function

f(z)    =  1  + 2z
z2 + z3

Now 

f(z)  = 1 + 2z  = 1 (2 –    1    ) = 1 (1 + z – z2 + z3 – . . .  )z2 + z3            z2           1  + z          z2

=   1  + 1 –  1   +  z – . . .z2       z

This is not a Maclaurin series: the first two terms are unexpected, and the  function  f has a
singularity at  z = 0.

Question Perhaps there are other interesting series to investigate?

EXPLORATION ...



QUIZ 6.2 QUIZ 6.2 

1. In the Taylor series for f ,   z  –  z0 has coefficient
(a) f ( z 0 ) ;  ( b )  f ′( z 0 ) ;
( c )  f ′′( z 0 ) / 2 ! .

2. A Maclaurin series is a special type of Taylor series.
(a) True ; (b) False .

3. sin z = 1 – z2/2! + z4/4! – . . .  .
(a) True ; (b) False .

4. 1/(1 – w 2) = 1 + w 2 + w 4 + ... if | w | < 1.
(a) True ; (b) False .

1. (b)  From Taylor’s 
Theorem.

2. True.  Set  z 0 = 0.

3. False.  This is the 
series for the cosine.

4. True.   This is the 
geometric series with
z = w 2.

x



Laurent’s Theorem

Let  C1, C2 be concentric circles, centre  z0, with radii  r1,  r2 (r1 > r2) .

Theorem 6.4 (Laurent) If  f is analytic on C1 and C2 and throughout the annulus between
these two circles, then at each point in this domain, f(z)  is represented by the expansion

f ( z )  =  Σ
∞

n = 0 a n ( z –  z 0 ) n +  Σ
∞

n = 1
b n ( * )

( z –  z 0 ) n

where
an = 1  ∫

C 1  

f(ζ )  dζ (n = 0,  1 ,  2 ,  . . .  ) ,
2π i  (ζ – z0) n+1   

(**)
bn = 1  ∫

C 2  

f(ζ )  dζ (n = 1,  2 ,  . . .  ) ,
2π i  (ζ – z0) –n+1   

each path of integration taken counter-clockwise.

The series (*) is a Laurent series.
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Notes on Laurent’s Theorem (I)

(1)  If f  is analytic at all points in and on C1 except
at  z 0 , we can take  r2 (radius of C2)  to be arbitrarily
small.

Then (*) above is valid for 0  < | z  –  z0 |  <  r1.

(2)  If  f is analytic at all points in and on C1, 

then f ( z ) / ( z  –  z 0) - n + 1 is analytic in and on C2

(since  – n + 1  ≥ 0).  

So integral (**) is zero, and (*) reduces to the Taylor
series.
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Notes on Laurent’s Theorem (II)

(3) Since   f (z ) / (z  –  z 0) n + 1 and  f (z ) / (z  –  z 0) – n + 1 are analytic throughout the

annular region r2 ≤ |  z  –  z0 |  ≤ r1, we can replace  ∫
C 1

and  ∫
C 2

by ∫
C

where C is any
closed contour around the annulus in the positive direction.

This means that (*) can be written

f ( z )  =  Σ
∞

n = – ∞ c n ( z –  z 0 ) n

r2 < | z  –  z0 |  <  r1

where

cn = 1  ∫
C

f(ζ )  dζ––         ––––––––– (n =  1 ,  2 ,  . . .  )   2π i  (ζ – z0)n+1   

(***)

CCz 120
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Notes on Laurent’s Theorem (III)

(4)  In practice, some, or even many of the coefficients may be zero.

Example Consider   f(z)  = 1/(z – 1)2 where  | z – 1 | > 0.

Here  z0 =  1,  c– 2 =  1,  and all the other coefficients are zero.

Using (***), we observe that

c–2 = 1   ∫
C

f(ζ )  dζ = 1  ∫
C

dζ =  1 .
2π i  (ζ – z0)–1           2π i  ζ – z0



Notes on Laurent’s Theorem (IV)

(5) For particular examples we usually do not find the coefficients of an expansion using
the formula. In other words, the general formula is useful more as an existence formula.

Example Find the Laurent series (with  z0 =  0)  for f(z)  = ez/z2.

Using the Maclaurin expansion for e z , we obtain:

f(z)   =  1 +  1 +  1 +  z +  z2
+ . . .  .           ( z ≠ 0)

z2 z 2!    3!      4!   

Example  Find the Laurent series (with  z0 =  0)  for   f(z)  = e(1/z) .

Using the Maclaurin expansion for  e z with a change of variable, we obtain:

f(z)   =  1 +  1  +   1   + . . . + 1  + . . .  .     (z ≠ 0)
z 2!z2 n !zn



Proof of Laurent’s Theorem (I)

If  z lies in the annular region, then

1   ∫C 1

f ( ζ) dζ    1   ∫C 2

f ( ζ) dζ               (†)f(z)   =
2π i ζ – z            2π i ζ – z

This is the Cauchy integral formula extended to a
multiply-connected domain.

To show this explicitly in this special case, we take a
small anti-clockwise directed circle  K with centre z ,
lying within the domain.  Then

∫C 1

f ( ζ) dζ    ∫C 2

f ( ζ) dζ    – ∫K
f ( ζ) dζ     =   0.–    

ζ – z            ζ – z ζ – z
Notice that by the Cauchy integral formula,

1 ∫K  
f ( ζ) dζ  f(z)   = .

2π i ζ – z
Comparing this equation with equation (†), the validity 
of (†) is confirmed.                                                                                             [Continued]
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Proof of Laurent’s Theorem (II)

The first integral of (†) will give the Taylor series part, so as before

f(ζ )         f(ζ )         f(ζ )                       f(ζ )                        f(ζ )(z – z0)N
––––    =   ––––––  +  –––––– (z – z0) + ... +  ––––––  (z – z0)N–1 + –––––––––––   
ζ – z           ζ – z0 (ζ – z0)2 (ζ – z0)N (ζ – z )(ζ – z0)N

For the second integral of (†) we note that
– 1                        1                            1                  1 ––––––   =   –––––––––––––––  =   –––––– . –––––––––––
ζ – z          (z – z0) – (ζ – z0) z – z0 (ζ – z0) 

1 –  ––––––––(z – z0)
Multiplying through by f(ζ ) , and expanding the last quotient as a geometric series gives

– f(ζ )       f(ζ )        f(ζ )        1                  f(ζ )          1           (ζ – z0)N   f(ζ )
––––    =  –––––  + ––––––– . ––––– + ... + –––––––––. ––––––     + –––––––– . –––––  
ζ – z         z – z0 (ζ – z0)–1 (z – z0)2 (ζ – z0)– N+1 (z – z0)N (z – z0 )N (z – ζ )

[Continued]



Proof of Laurent’s Theorem (III)
So from (†),

f ( z )  =  Σ
N – 1
n = 0 a n ( z –  z 0 ) n  +   R N ( z )

+   Σ
N
n = 1

b n +  Q N ( z )       
( z –  z 0 ) n

where a n ,  b n are as given in the statement of the theorem,  R N(z )  is as before, and
RN(z)  → 0  as  N → ∞ . 

Also,
1             1               (ζ – z0)N f(ζ)QN(z)  =  ––––– . ––––––––     ∫

C 2
––––––––––––– dζ

2π i (z  –  z0)N z – ζ

If  r = | z  –  z0 | , and  r2 is the radius of  C2, then r2 < r.
Let  M be the maximum of  | f(ζ) |  on C2.  Then

1       r2
N M. 2π r2 Mr2 r2

N
| QN(z) |  ≤ –––––– . ––––––––––   =   ––––– . (––) → 0  as  N → ∞ . 

2π rN r – r2 r – r2 r

This completes the proof of the theorem. THE  END!



QUIZ 6.3QUIZ 6.3

1. A Laurent series is a special type of Taylor series.
(a) True ; (b) False . 

2. The general coefficient in the Laurent expansion of
f about  z0 is 
(a) True ; (b) False . 

3. The Laurent series for f(z)  = ze (1/z) about z = 0 
is   z + 1 + z /2! + z2/3! + . . .  .
(a) True ; (b) False 

4. The Laurent series for  f(z)  = s inh (–1/z) about 
z = 0  is  1 /z – 1/3! .1/z3 + 1/5! .1/z5 – . . .  .
(a) True ; (b) False . 

1. False.  A Taylor series 
is a special type of 
Laurent series.

2. False.  We need a factor 
of  1/2πi.

3. True.  First expand 
e (1/z )

4. False.  All terms 
are negative. x



Further Properties of Series

There are many parallels with real series. This follows from the fact that Σ z n is
convergent  if and only if  Σ xn and  Σ yn are convergent.

Now if  Σ xn and  Σ yn are convergent, then  xn → 0,  yn → 0.  
We deduce that  Σ z n convergent ⇒ zn → 0. Of course, the converse is false!!

So the terms of a convergent complex sequence are bounded:
that is, there exists  M: | zn |  <  M for all n.

We say that  Σ zn is absolutely convergent (AC) if the series  Σ | zn | = Σ √(x n
2 + yn

2)
is convergent. 

In this case,  by the Comparison Test for real series,  Σ | x n |  and  Σ | yn |  are convergent. 
Thus  Σ x n , Σ yn are AC and so convergent.   It follows that  Σ zn is convergent.

Thus Σ zn absolutely convergent    ⇒   Σ zn is convergent.



Absolute Convergence of Power Series 

We now prove an important result for power series. Analogues of the next results hold for
Σ a n ( z  –  z 0 ) n , but we give this proof for  z0 =  0.

Theorem 6.5 If a power series  Σ a nz n converges when z  =  z1 (≠ 0),  then it is A.C. for
all z : | z |  <  | z1 |.

Proof Since  Σ a n z 1
n is convergent, for some M we have | a n z 1

n | < M for all n.
We write  | z | / | z1 |  =  k ( < 1 ).
Then 

|  a n z n |  =  |  a n z 1
n | . |  z /  z1 |n <  Mkn.

Now the series with terms  Mkn (k <  1)  is a real, convergent, geometric series.  
So by the Comparison Test,

Σ a nz n is convergent.



Circle of Convergence

Our previous result shows that the set of all points inside some circle centred at the origin
is a region of convergence for  Σ a nz n.  
The largest such circle is the circle of convergence.

We note that by the theorem, the series cannot converge at any point z2 outside this circle.
Similarly, if the series  Σ b n / z n converges for  z =  z 1 , then it is absolutely comvergent
at every point  z exterior to the circle centre  O passing through  z1. The exterior of some
circle centred at  O is therefore a region of convergence.

Functions defined by Power Series

The theory starts to get a bit solid (boring!) here, so we settle for some stated results.
Nevertheless, these results are important.

Let  S ( z )  =  Σ a n z n over some circle of convergence C 1. Thus  S is the function
defined by the convergent power series.



Some Stated Results  (I)
Then

(1) Function S (z) is continuous at each  z interior to  C1. 

(2) Function S (z)  is analytic at each  z interior to  C1. 

(3) If C is any contour interior to  C1, then the power series can be integrated term by 
term, i.e.

∫
C

S (z) dz  =  Σ 0
∞ an ∫

C
z n dz .

[If  C is a closed contour, then of course we get the value  0  on both sides.]

(4) The power series can be differentiated term by term. 

Thus for each  z inside  C1,

S ′(z)  =  Σ 0
∞ n a n z n - 1.



Some Stated Results  (II)

(5) The Taylor / Laurent series about  z 0 for a given function is unique.

(6) Let  f(z)  = Σ an zn,  g (z)  = Σ bn zn.
If we formally multiply these series together and collect the coefficients of like powers
of z , we get the Cauchy Product of the two series:

f(z).g(z)  =  a0b0 + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z2 + ...+ (Σ k akbn-k ) zn + ... .

We now have:

The Cauchy Product of two power series converges to the product of their sums at all
points interior to their circles of convergence.

Illustration
z6        z10

s in(z2)   = z2 – ––– + ––– . . .  .
3!      5!

Even though this series is obtained by substituting  z2 in the series for  sin z,
it will be the same as the Maclaurin series for  sin(z2).



QUIZ 6.4AQUIZ 6.4A

1. If  zn → 0,  then  Σ zn must be convergent.
(a) True ; (b) False .

2. If  Σ zn is absolutely convergent, 
then it must be convergent.
(a) True ; (b) False .

3. If  Σ bn /zn is convergent for  z = z1. 
and | z2 |  >  | z1 | , then  Σ bn /z2

n is convergent.
(a) True ; (b) False .

4. The Cauchy product of the series for  sin z and 
cos z is:  

S =  z – 4z3/3! + 16z5/5! + . . .  .
(a) True ; (b) False .

1. False.   zn = 1/n is a 
counter-example.

2. True.  See the notes.

3. True.  See the notes.

4. True.  Directly, or use
2 sin z cos z = sin (2z).

x



QUIZ 6.4BQUIZ 6.4B

Theorem 6.5 If a power series  Σ a nz n converges when z  =  z1 (≠ 0),  then it is A.C. for
all z : | z |  <  | z1 |.

Proof Since Σ a nz 1
n is convergent, for some M we have {  1  } for all n.  We write  {  2  }.

Then |  a n z n |  =  {   3   } <  Mkn.

Now the series with terms  {   4   } is a real, convergent, geometric series.

So by the Comparison Test,
Σ a nz n is convergent.

Match the above boxes 1, 2, 3, 4 with the selections  
(a) Mkn (k < 1) ;  (b) | a nz 1

n |.| z / z1 |n ;  
(c) | a n z 1

n | < M;  (d) | z | / | z1 |  =  k ( < 1 ).

My solutions: 
(1) (2) (3) (4)

1. (c)   2. (d)   3. (b)    4. (a) x



Laurent’s Theorem: Example I

For the next examples, set
– 1                        1                    1f(z)   = ––––––––––––    =    –––––    –    ––––––  .

(z– 1)(z – 2)       (z– 1)        (z – 2)  

This function is analytic everywhere except at  z = 1  and  z = 2.

Find the Maclaurin series for f(z) valid in  | z |  <  1.

Now 1                    1                1          1              1 f(z) =    –––––    –    ––––––     =   –– .  –––––––  –  ––––––
(2– z)       (1  –  z)       2   1  –  z /2      (1  –  z )

Also  | z |  <  1   ⇒ | z /2 |  <  1.   Hence

1    1    z 1 z2                                                  ∞ 1   z  n
f(z) = ––  +  –  .  –    +   –  .  –   + . . .  –  1  –  z – z2 – . . .   =  Σ [ – ( – ) – z n ]2       2     2      2     4                                                   0        2     2

valid for  |  z |  <  1 .

Thus this is the Maclaurin series for  f(z) over the given domain.



Laurent’s Theorem: Example II

We are given
– 1                        1                    1f(z)   = ––––––––––––    =    –––––    –    ––––––  .

(z– 1)(z – 2)       (z– 1)        (z – 2)  

Find the Maclaurin series for f(z) valid in  1  <  | z |  <  2.

In this case we have  |  1 /z |  <  1 and  |  z /2 |  < 1.

Now     1          1                 1           1       f(z) =    –– .  –––––––     +  –– .   ––––––––  
z (1 – 1/z)       2     (1  –  z /2  )

So
1    1         1  1 z z2 ∞ 1        z n

f(z) = ––  +  –  .   +   –  .  +  . . .  +  –   + – + ––  + . . .   =     Σ [ –––– + –––    ]z z 2 z 3 2       4       8                       0        zn+1 2n+1

valid for  1 <   |  z |  <  2 .
This is the required Laurent expansion.
We observe here that  c–1 (or  b1)  =  1.



Evaluation of Integrals 

We noted in the previous calculation that  c–1 (or  b1)  =  1.
Recall that

1           f ( ζ ) d ζcn =  –––– ∫C
––––––––––––––––––

2π i      (ζ – z)n+1

Thus
1c– 1 =  –––– ∫C

f ( ζ ) d ζ =  1.
2π i      

where  C is any simple closed contour around the annulus (taken in the positive direction). 

That is,
∫

C
f ( ζ ) d ζ =  2π i .

This suggests the use of the Laurent series for the evaluation of integrals.

∫



Laurent’s Theorem: Example III

Again, – 1                        1                    1f(z)   = ––––––––––––    =    –––––    –    ––––––  .
(z– 1)(z – 2)       (z– 1)        (z – 2)  

Find the Maclaurin series for f(z) valid in   | z |  >  2.

Here we have  |  2 /z |  <  1 and so  |  1 /z |  <  1 .

Now 1          1                1          1       f(z) =    –– .  ––––––     –   –– .  –––––––  
z (1 – 1/z)      z (1 – 2/z)

So
1    1         1  1 2 22                     ∞ 1        z n

f(z) = ––  +  –     +   –    +  . . .  –  –– – –– –  ––  –   . . .   =     Σ [ –––– + –––    ]
z z 2 z 3 z z2 z3 0        zn+1 2n+1

valid for   |  z |  >  2 .

Note that the coefficient of  z–1 is zero. Hence  ∫
C

f ( ζ ) d ζ = 0 for any small contour C
about  0  and exterior to the circle  | z | = 2.
Note It is possible to develop the whole theory of analytic functions beginning with
series, but there is no advantage. The proofs are not easy and motivation is lacking.



Zeros of an Analytic Function (I)

If  f is analytic at z0, there exists a circle centre z0 within which  f is represented by a
Taylor series:

f(z)  = a0 + Σ an(z – z0)n (  |  z – z0 |  <  r0) ,

where  a0 =  f(z0)  and  an = f (n)(z 0 )/n! .  If  z0 is a zero of  f,  then  a0 =  0.  

If in addition
f ′(z0)  =  0  =  f′′(z0)  =  ...  =  f (m –1)(z0)

but  f (m)(z 0 ) ≠ 0,  then z0 is a zero of order m. 

In this case,
f(z)  = (z – z 0 )m  Σ am+n (z – z 0 )n (am ≠ 0,   | z – z 0 |  <  r0) 

=  (z – z 0 )m g (z)  say,

where  g(z0)  =  am ≠ 0.
O O O O O O O O O O



Zeros of an Analytic Function (II)

Thus  f(z)   =  (z – z0)m g (z) where  g(z0)   =  am ≠ 0.
Since  g (z) is represented by a convergent power series,  g is continuous at  z0.  That is,
given  ε > 0,  there exists a  δ >  0  such that  |  z – z0 |  <  δ ⇒  |  g (z)  –  g (z0)  |  <  ε.
Now choose  ε = | am | /2.  
Then there exists  δ : |z – z0 |  <  δ ⇒  |  g (z)  –  am |  <  |  am | /2 .
It follows that  g (z)   ≠ 0 at any point in neighbourhood  | z –  z0 |  <  δ.

We have proved:

Theorem 6.6  Let  f be analytic at point z 0 which is a zero of f. Then there exists a
neighbourhood of  z 0  throughout which  f has no other zeros, unless  f ≡ 0.  

That is, the zeros of an analytic function are isolated.

O O



QUIZ 6.5QUIZ 6.5

1. If   f (z)  = 1/[z(1  –  2z)] and  |  z |  <  1/2, then the coefficient of z2 in the 
Laurent expansion for  f is : 

2. If f (z)  = 1/[z(1  –  2z)] ] and  |  z |  >  1/2, 
then the coefficient of 1/z2 in the Laurent 
expansion for  f is :

3. Function  f ( z ) = z3 cos z has a zero at  
z = 0  of order 3.
(a) True ; (b) False .

4. Function  f (z)  = z3s in  z  has a zero at  z = 0  of order 3.
(a) True ; (b) False . ©

1. The answer is 8: 
f(z) = 1/z + 2 + 4z + 8z2 + ...

2. The answer is –1/2: 
f(z) = –1/2.z2 – 1/4.z3 + ... .

3. True. Since cos 0 ≠ 0.

4. True.  Since sin 0 = 0.
x

http://www.maths.adelaide.edu.au/people/pscott/CA/caw0.pdf
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