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Introduction

Definition  If there exists a neighbourhood of  z 0 throughout which f is analytic except
at  z 0  itself, then  z 0  is an isolated singularity of  f.

Contrast  Log z which has a continuous ray of singularities.

Now from the Cauchy integral formula and the Derivative formulae,

∫C

f ( z ) d z
=  2 π i  f ( z 0 ) , ∫C

f ( z ) d z
=  2 π i  f ′( z 0 ) ,  . . ._______ _________

z  –  z 0                                 (z  –  z 0 ) 2

where the integrals are in an anti-clockwise direction about a simple closed contour
containing  z 0 . We observe that the values of these integrals are of the form 2 π i .K . ©

Example f(z)   = z + 1   __________
z3(z2 + 1)  

has three isolated singularities: z = 0,  z = – i .
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Residues

We now change our notation, replacing f ( z ) / ( z  –  z 0 ) by f(z) . So denote by  f(z) a
function which is analytic on and inside C except at an isolated singular point z 0 inside C.
Then  ∫

C
f(z) dz =  2 π i .K , where  K is a constant and the integral is once anti-clockwise

round  C.

Definition K =  2π i
  1  ∫

C
f(z) dz   is the residue of  f at the isolated singular point z 0 .

Theorem 7.1 (Residue Theorem) Let  C be a closed contour within and on which
function  f is analytic except for a finite number of singular points  z 1 , z 2 , ... , z n interior
to C.   If  Ki denotes the residue of  f at  z i , then

∫
C

f(z)  dz = 2 π i . (K1 + K2 + . . .  +  Kn) ,

where the integral is around  C in positive sense. ∆



Proof of the Residue Theorem

Proof Let each  z i be enclosed as shown in a circle  C i with radius small enough so
that  C and the  C i are all separated. Now  f is analytic in the remaining region within
and including C, so by Cauchy’s Theorem:

∫
C

f(z) dz –  ∫
C 1

f(z) dz – . . .  –   ∫
C n

f(z) dz =  0 ,

so     

∫
C

f(z) dz =  ∫
C 1

f(z) dz + . . .  +   ∫
C n

f(z) dz

=  2 π i .(K1 +  K2 +  ...  +  Kn ),

using the definition of  Ki.

It follows that evaluation of such integrals depends on our ability to evaluate residues.

O x

y
C
C C1 2z1 z2



Example on the Residue Theorem

Evaluate   ∫
C

(5z – 2) dz  __________  ,
z(z  – 1)

where  C is  | z | = 2  taken in the positive sense.

The singularities inside  C are  z =  0, 1. So integral  I =  2π i.(K0 +  K1) (say).

Find  K0. Set  g (z)  = (5z – 2) / (z – 1) –  analytic in a small circle  C0 centred at  0. 
By the Cauchy integral formula, ∫

C 0

g (z) /z dz =  2π i .g(0)  = 2π i .2   =  2π i .K0.

Find K1. Set h (z)  = (5z – 2) /z –  analytic in a small circle  C1 centred at  1. 
Again by the Cauchy integral formula,

∫
C 1

h (z) / (z – 1) dz = 2π i .h (1)  = 2π i .3   =  2π i .K1.

Hence I  =  2 π i . (2  + 3)  = 10π i .



Alternative Solutions

(1) Use partial fractions:

∫ C
( 5 z  –  2 ) d z   = ∫ C

2  d z   + ∫ C
3  d z     =   2π i . ( 2  +  3 ) =  1 0 π i .___________                _____             ______    

z ( z –  1 )              z z –  1

(2) Use the Laurent expansion with  | z | > 1,  and find the coefficient of  1 / z .

So

( 5 z  –  2 ) = ( 5 z  –  2 )  =  ( 5 z  –  2 )_________            ___________          _________ ( 1   +  1/z +  1/z2 + . . .  )
z ( z –  1 )         z 2 ( 1  –  1 / z )           z 2

2       2             5        5=   –   ___  –  ___  –  ...  +   ___  +  ___  +  ... .
z 2       z 3                  z        z 2

and noting that the coefficient of  1 / z is  5,  we obtain the result as before.

Do you always expect
the same solution?  

This property is 
consistency.



QUIZ 7.1QUIZ 7.1

1. Function  f(z) =                     z–––––––––––––––––––––
(z – 1)(z – 2)(z2 + 4)

has just two isolated singularities.
(a) True ; (b) False . 

2. If  f has residues  K1 at  z = 1 and  K2 at  z = 3 i ,  
C is  | z | = 2  once positively, then  
∫

C
f(z)  dz = 2π i . (K1 + K2) .

(a) True ; (b) False . 

3. With  C as in Q 2,   ∫
C

z–––––––––––––  dz =  2π i .(z – 1)(z  + i)
(a) True ; (b) False . 

4. If f(z)  = 3/z2 – 1/z + 2 + z – 3z2 for all
z  >  0,  then  ∫

C   
f(z)  dz = –1. (C as in Q 2.)

(a) True ; (b) False . 

1. False.  1, 2, ± 2i are all
isolated singularities.

2. False.  The value is 
2π i .K1 : since z =  3i
lies outside  C.

3. True.  K1 = 1/(1 + i),
K–i = – i / (–1 – i) .
I = 2π i . (K1 + K2) .

4. False.  The coefficient 
of  z – 1 is  –1, giving  
I =  – 2 π i .

x



Singularities and Poles

Singularities are obviously important in the theory. The nature of a singularity can be
determined from the Laurent expansion

∞ ∞ bnf(z)  = Σ an(z – z0)n +  Σ –––––––
0 1 (z – z0)n  

(over some domain), and in particular from the portion involving negative powers, known
as the principal part of  f at  z 0 .

Suppose  f(z)  = φ ( z ) / ( z  –  z 0 ) n , where  φ is analytic at  z0 and  φ (z 0 )  ≠ 0.

(This certainly means that  φ has no  (z – z0)  factors).

Then  f has a pole of order m at  z0 (or  z0 is a pole). 

A pole of order  1  is a simple pole.



Examples of Poles  (I)

(1) Consider f(z)  = (z2 – 2z + 3) /(z – 2) .  
Now  φ (z) = z2 – 2z + 3 is entire and  φ (2)  ≠ 0,  so z =  2  is a simple pole. 

(2) Consider  f(z) =  ( z +  1 ) / ( z 2 +  1 ) 2 and  z =  – i .

Set  φ (z) =  (z + 1) /(z  –  i )2.

Then  f ( z )  = φ ( z ) / ( z  +  i ) 2 , where  φ is analytic at z =  – i and  φ (– i )  ≠ 0.
So z =  – i is a pole of order 2.

(3) Consider  f ( z ) = sin z / z .
Here  φ (z) =  sin z is analytic, but  φ (0) =  0. Hence this is not a simple pole. In fact

sin z 1         z3 z4 z2 z4f ( z ) =   _____  =  ___ (z –  ___  +  ___  – ... ) =  1 –  ___  +  ___  –  ...
z z 3!         5!                     3!         4!

We say  z =  0 is a removable singularity.  We could define  f(0)  = 1.
(This would give a new function, coinciding with f for  z ≠ 0,  but also defined at  z =  0
and continuous there.)



Examples of Poles  (II)

(4) Consider f ( z )  =  e 1 / z .  There is a problem here at  z =  0.  Assuming 
1           1e 1 / z =  1  + ___  + ____ +  ... ,                     (*)z 2! z2

it is not possible to put this in the form  φ ( z ) / z m for any  m. 
We call this an essential singularity.

(5) Essential singularities often exhibit strange behaviour. 
When  f has a pole at  z 0 ,  we expect  f ( z ) → ∞ as  z → z 0 . This occurs. 
But it may not occur for an essential singularity.

Example Consider the function  (*) above.

For this function there is an essential singularity at  z =  0. 
Take z = r c i s θ ,  so  exp(1/z)  =  exp[(1/r) cis(–θ )].
Now take  θ =  π /2 and let  r → 0  (i.e. approach O along the positive imaginary axis.)
Approaching  O along this path,  | e 1 / z |  =  exp[(1/r)  cos  π /2] =  e 0 =  1.
That is, e 1 / z does not tend to  0.



Notes on Poles

(1) We can give general formulae for the residues for poles of order m –  essentially 
using Theorems 6.3, 6.4.

(2) Work on series is useful here.
(3) Most examples treat poles of low order. 

It is suggested that you learn the Cauchy integral formula and the Rules on 
Differentiation with respect to  z 0.  Thus:

1           1          f(z)___ f(z0)   =   ___ ∫
C

______ dz
0!                 2π i z  –  z0

1                  1          f(z)___ f ′(z0) =   ___ ∫
C

________ dz
1!                 2π i (z  –  z0)2

1                  1           f(z)___ f ′′(z0)  =   ___ ∫
C

________ dz
2!                 2π i (z  –  z0)3

etc.



More Examples on Poles and Residues

(1) Consider g ( z )  =
e – 2 z____
z 3 .

This function has a pole of order  3  at  z =  0.  
Hence the residue there is  1 / 2 ! . f ′ ′ ( 0 )  =  1 / 2 ! . 4 . e 0 =  2 .

(2) Consider             h ( z ) = z + 1_______
z 2  +  9

This function has a simple pole at  z =  3i.  The residue there is 

z + 1  | 3 i + 1      3  –  i______ =    ______ =   _____  .
z +  3 i | z  =  3 i 6 i  6      

Exx



QUIZ 7.2QUIZ 7.2

1. If  f(z)  = Σ 0
∞ a nz n + Σ 1

∞ b n z – n then  Σ 0
∞ a nz n is 

the principal part of  f at  0.
(a) True ; (b) False .

2. If  f ( z )  = z / ( z –  2 ) , then  f has a simple pole 
at  z = 2.
(a) True ; (b) False .

3. If f ( z )  =  ( c o s z –  1 ) / z , then f has a removable 
singularity at  z = 0.
(a) True ; (b) False .

4. The residue of f ( z )  = z +  1    at  z = 3 is  2/3.______
z 2 –  9  

(a) True ; (b) False .

1. False.  
The principal part 
is Σ 1

∞ b n z – n . 
2. True.  This is 

already in the 
form φ ( z ) / z .

3. True.
φ(z) = c o s z – 1
is analytic but 
φ (0)  = 0.

4. True.  Since 

z + 1 | 2––––       = ––
z + 3 | z = 3 3 .

x



Improper Real Integrals : Cauchy Principal Value

In the case of real improper integrals, we make the definition:

∫ ∞

− ∞ f ( x )  d x =   l i m   ∫ R
0  f ( x )  d x   +   l i m ∫ 0

– R ′ f ( x )  d x (1)
R →∞ R ′ →∞

where both integrals on the right exist. Notice that the variables  R , R ′ tend to infinity
independently in the two integrals.

It is useful to define the Cauchy Principal Value (Cauchy P.V.) in the following way:
P. V.  ∫ ∞

− ∞ f ( x )  d x =   l i m   ∫ R
– R f ( x )  d x (2)

R →∞

So with the Cauchy P.V., we are insisting that the upper and lower infinite limits are
approached at the same rate.

If the improper integral defined by (1) converges, then the value obtained is the same as
the Cauchy P.V. 

On the other hand, the Cauchy P.V. (2) may exist and integral (1) not converge.



Using the Cauchy Principal Value

Example Let  f ( x )  =  x . Here the Cauchy P.V. is  0, but the integral is not convergent.

Special case If  f is even and the Cauchy P.V. exists, then  ∫ ∞

− ∞ f ( x )  d x converges. 
For in this case

∫ R
0  f ( x )  d x   =  ∫ 0

– R f ( x )  d x =   1
2  

∫ R
– R f ( x )  d x

and the existence of the last Cauchy P.V. guarantees the existence of the first two integrals.

Example If  f ( x )  = p ( x ) / q ( x ) where  p ,  q are real polynomials with no common
factors,  q ( x ) has no real zeros, and the degree of  q ( x ) is greater than or equal to the
degree of  p ( x ) +  2,  then  ∫ ∞

− ∞ f ( x )  d x  converges. 

Its value can easily be found using residues. CCPPVV



Cauchy Principal Value : Example  (I)

x2 dxEvaluate   I =  ∫ 0
∞ –––––––––––––––– .

(x2 + 9)(x2 + 4)2

z2
Consider   f(z) = –––––––––––––––– .

(z2 + 9)(z2 + 4)2

This has simple poles z =  ± 3 i ;  poles of 2nd order
z =  ± 2 i . We find the residues for the poles lying inside
the illustrated contour  C.

z2 |               3 iFor  z =  3 i :    K1 =   ––––––––––––––––  =    ––– .
(z + 3 i)(z2 + 4)2  |  z = 3 i         5 0

For  z =  2 i : d z2 |                    1 3 iK2 = –– ( ––––––––––––––––– ) =  ...  =   –––– .
dz (z2 + 9)(z2 + 2 i)2    | z = 2 i                2 0 0

Hence
∫ R

– R f ( x )  d x  +  ∫C R
f ( z )  d z  =   2 π i ( K 1 +  K 2 )   =   1

π
0 0 .

[Continued]

CR

C

2i

3i

–2i

–3i

-R R x

y

O



Cauchy Principal Value : Example  (II)

Now on  CR, 
z2 R2

| f(z) | = | –––––––––––––––– | ≤ ––––––––––––––––
(z2 + 9)(z2 + 4)2          (R2 – 9)(R2 – 4)2

and the length of  CR is  π R . Thus

| ∫
C R

f ( z )  d z  |   ≤ π R3
–––––––––––––––––––––––   → 0   as   R → ∞.
(R2 – 9)(R2 – 4)2

So ∫ ∞

– ∞ f ( z )  d z =  π /100 (noting that  f is even), or  I =  π /200 .

Question Is this easier than factorizing and using partial fractions in the real case?!

Probably yes, especially as the integral around  CR will fairly clearly always vanish 
when the difference in degree is  2 or more.



Improrper Integrals Involving Trigonometric Functions

Residue theory is also useful for evaluating integrals of the form

∫ ∞

– ∞
p ( x )

s i n x d x ,  ∫ ∞

– ∞
p ( x )

c o s x d x (*)–––– ––––
q ( x )                  q ( x )

where  p, q are real polynomials and  q (x) has no real zeros.

Note that the previous method cannot be used here. For we have 

|  s in  z | 2 = s in2 x + sinh2 y and |  cos  z | 2 = cos2 x + sinh2 y ,  

so  | cos z |  and  | sin z |  increase like  sinh y as  y → ∞.

However, the integrals (*) can be combined to give

∫ ∞

– ∞

p ( x )
e i x d x ,  ––––

q ( x )

and  | e iz |  =  e – y,  which is bounded in the upper half plane.

∞∞



Trigonometric Function Integral : Example (I)

Show that 

This integral is the real part of 

∫ ∞

– ∞

e i x
d x–––––––– ,

( x 2 +  1 ) 2              

and we obtain this by integrating  f(z)   =  e iz/ (z2 + 1)2 along the real axis. 
The function f is analytic except for poles of order 2 at  z =  – i. The pole z = i lies
inside the illustrated semicircular contour.   So

∫ R

– R

e i x
d x  ∫ e i z

d z =  2π i .K1.––––––––  +            –––––––––  
( x 2 +  1 ) 2                C

R
( z 2 +  1 ) 2    

Now    K1 = d ( e iz

) | = i––   –––––––              ––    (calculating). 
dz (z + i)2 | z = i 2e

[Continued]

∫ ∞

– ∞

c o s x
d x = π––––––––                 ––

( x 2 +  1 ) 2               e  .  

x

y

O

C
CR

i

-i



Trigonometric Function Integral : Example (II)

We show that the second integral tends to  0  as  R → ∞.   For  z in CR,

|  z 2 + 1 | 2  ≥ (R2 – 1)2 and |  e i z |  =  |  e – y |   ≤ 1 (y ≥ 0)

so                                            ≤ →  0  as R → ∞.

Hence

∫ R

– R

e i x
d x  πlim              –––––––––  =   ––– .

R → ∞ ( x 2 +  1 ) 2               e

So, taking real parts,

∫ R

– R

c o s x
d x  πlim              –––––––––  =   ––– .

R → ∞ ( x 2 +  1 ) 2               e

Since the integrand is even here, this Cauchy P.V. is the required integral.

| ∫ e i z
d z |––––––––

|   CR
( z 2 +  1 ) 2      |

1 . π r–––––––––
( R 2 –  1 ) 2   

→ ∞



Definite  Integrals of Trigonometric Functions 

We can use residues to evaluate certain definite integrals of the type 

∫
0

2 π F ( s i n θ, c o s θ )  d θ.

The variation of  θ from  0  to  2π  suggests that we use  θ as the argument of a point z on
the unit circle  C.  That is, z =  exp(iθ)  = sin θ + i cos θ (0  ≤ θ  ≤ 2π). Then

sin θ =
z –  z–   

=
z – 1/z______   ______ ;

2 i             2 i

and the integral becomes   ∫
C

F  ( ( z –  1 / z ) , ( z +  1 / z ) ) d z .––––––––    ––––––––
2i 2

That is, a contour integral of a function of  z around the unit circle  C taken in the positive
sense.

cos θ =
z +  z–   

=
z + 1/z______   ______ ;

2 2



Integrals of Trigonometric Functions : Example  (I)

Show that ∫ 0

2 π        d θ  2 π   –––––––––––– =   ––––––––– ( | a |  <  1 ,  a r e a l )
1  +  a s i n  θ        √ ( 1  –  a 2 )

The formula is clearly valid for  a =  0.   Suppose that  a ≠ 0.   Then

1            dz                   2 /aI = ∫
C

–––––––––––––––   ––– =   ∫
C

––––––––––––––––– d z
1  +  a ( z –  1 / z  ) i z z 2 +  ( 2 i / a ) z  –  1––––––––

2 i

where  C is the circle |  z |  =  1 traversed in the positive direction.

The denominator has zeros:

z1 =  i ( –1  +  √(1 – a2) ) ,   z1 =  i ( –1  –  √(1 – a2)).a                                              a

Hence the integrand is 2/a––––––––––––––  .
(z  –  z1)(z  –  z2)

[Continued]

∫
C



Integrals of Trigonometric Functions : Example  (II)

Also, noting that  | a | > 1,  we have 

|  z2 |   =  (1  + √(1 – a2)) >  1;                                     ––––––––––––––
|a |

that is,  z 2 lies outside  C.

Further,  | z1z2 |  =  1,  so  | z 1 | < 1,  –  a simple pole inside  C .

The corresponding residue  K1 is:

2/a | 2/a 1–––––              =   –––––––   =   ––––––––––
z  –  z2 | z  = z1 z1 – z2 i√(1 – a2)

Hence 
2πI =  2π i.K1 =  –––––––––

√(1 –  a2)  . THE END



QUIZ 7.3QUIZ 7.3

1. To show that  ∫– ∞
∞ f ( x ) d x converges, it is sufficient to 

show that P.V.  ∫– ∞
∞ f ( x ) d x converges.

(a) True ; (b) False .

2. If  f is an odd function and  P.V. ∫– ∞
∞ f ( x ) d x  exists, then

∫– ∞
∞ f ( x ) d x must converge.

(a) True ; (b) False .

3. ∫ 0

∞ 3x2 + 1      
––––––––––––––   dx   converges.

(x2 + 3)(x4 – 1)
(a) True ; (b) False .

4. To evaluate  ∫
0

2 π F(s in θ , cos θ ) dθ as an integral  

∫
C

f ( z ) d z , we use the substitution  z =  e x p ( i θ ) .

(a) True ; (b) False .

1. False. For example, 
with  f ( x )  =  x .

2. False.  Here 
f ( x )  =  x  is again 

a counter-example.
3. True. The numerator 

and denominator 
have degrees  2, 6, 
and 6 ≥ 2 + 2.

4. True.  The 
substitution gives 
points on the 
unit circle. x



Final Comment

Because of time constraints, the course finished here. With a little more time, we would
have showed that analytic mappings are conformal (preserve angle measure), and worked
through a few boundary value problems. These would have demonstrated again the
practical nature of complex analysis, and given us practice in the use of complex
mappings.

I hope you have enjoyed this course, and found the notes helpful.  Certain parts of the
material may have seemed intricate and fiddly as we worked through them.  But if we
stand back and look, we find that the complex analysis is very practical, and at the same
time beautiful in the way it connects and explains different aspects of our earlier
mathematics.

Paul Scott
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