Class Exercise 1.

1. Prove that $\sqrt{2}|z| \geq|\operatorname{Re} z|+|\operatorname{Im} z|$. Deduce the maximum value assumed by $\cos \theta+\sin \theta$.
2. In each case below, sketch the set of points determined by the given condition:
(a) $|z+1-i|=1$;
(b) $|z-i| \leq 3$;
(c) $\operatorname{Re}(\bar{z}+i)=2$;
(d) $|z-i|=|z+i|$.
3. (a) Given that $z_{1} z_{2} \neq 0$, use the polar form to prove that $\operatorname{Re}\left(z_{1} \cdot \bar{z}_{2}\right)=\left|z_{1}\right| \cdot\left|z_{2}\right|$ iff $\theta_{1}-\theta_{2}=2 n \pi$ ($n \in Z, \theta_{1}=\arg z_{1}, \theta_{2}=\arg z_{2}$).
(b) Deduce that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ iff $\theta_{1}-\theta_{2}=2 n \pi(n=0, \pm 1, \ldots)$ where $\theta_{1}=\arg z_{1}, \theta_{2}=\arg z_{2}$. Verify this statement geometrically.
4. In each case below, find all the roots and exhibit them geometrically:
(a) $(5 i)^{\frac{1}{2}}$;
(b) $i^{\frac{1}{4}}$;
(c) $(-1)^{\frac{1}{4}}$;
(d) $4^{\frac{1}{5}}$.
5. Find the four roots of the equation $z^{4}+4=0$, and use them to factor $z^{4}+4$ into quadratic factors with real coefficients.
