Class Exercise 1.

- 1. Prove that $\sqrt{2}|z| \ge |\operatorname{Re} z| + |\operatorname{Im} z|$. Deduce the maximum value assumed by $\cos \theta + \sin \theta$.
- 2. In each case below, sketch the set of points determined by the given condition:

a)
$$|z+1-i| = 1$$
; (b) $|z-i| \le 3$; (c) Re $(\bar{z}+i) = 2$; (d) $|z-i| = |z+i|$.

- - (b) Deduce that $|z_1 + z_2| = |z_1| + |z_2|$ iff $\theta_1 \theta_2 = 2n\pi$ $(n = 0, \pm 1, ...)$ where $\theta_1 = \arg z_1, \theta_2 = \arg z_2$. Verify this statement geometrically.
- 4. In each case below, find all the roots and exhibit them geometrically: (a) $(5i)^{\frac{1}{2}}$; (b) $i^{\frac{1}{4}}$; (c) $(-1)^{\frac{1}{4}}$; (d) $4^{\frac{1}{5}}$.
- 5. Find the four roots of the equation $z^4 + 4 = 0$, and use them to factor $z^4 + 4$ into quadratic factors with real coefficients.