Class Exercise 2.

1. Assuming the sufficiency theorem for differentiablity, and that $f^{\prime}(z)=$ $u_{x}+i v_{x}$, show that $f^{\prime}(z)$ and its derivative $f^{\prime \prime}(z)$ exist everywhere, and find $f^{\prime}(z)$ and $f^{\prime \prime}(z)$ when
(a) $f(z)=2 z+i ;$
(b) $f(z)=e^{-x} e^{-i y}$;
(c) $f(z)=z^{3}$.
2. If $f(z)=x^{3}-i(y-1)^{3}$, then $u_{x}(x, y)+i v_{x}(x, y)=3 x^{2}$. Why is it true that $f^{\prime}(z)=3 x^{2}$ only at the point $z=i$?
3. Show that u is harmonic in some domain and find a harmonic conjugate v when
(a) $u(x, y)=2 x(1-y)$;
(b) $u(x, y)=2 x-x^{3}+3 x y^{2}$;
(c) $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})=\sinh \boldsymbol{x} \cdot \sin \boldsymbol{y}$.
4. Show that
(a) $\exp (2 \pm 5 \pi i)=-e^{2} ;$ (b) $\exp \left(\frac{2+\pi i}{4}\right)=\sqrt{e}(1+i) / \sqrt{2}$;
(c) $\exp (z-\pi i)=-\exp z$.
