Class Exercise 3.

1. Find the image of the quadrant $x>1, y<0$ under the transformation $w=1 / z$. Point out the images of the boundaries of the quadrant.
2. Express the mapping $w=f(z)=(z+1) /(z-1)$ as a combination of simpler mappings. Hence find the image of the half-plane $x>0$ under the mapping $w=f(z)$.
3. Show that $\sin z=\sin x \cosh y+i \cos x \sinh y$.
[Harder!] By considering the images of vertical lines $x=c(-\pi / 2 \leq c \leq$ $\pi / 2$), show that $w=\sin z$ is a $1-1$ mapping of the strip $-\pi / 2 \leq x \leq$ $\pi / 2, y \geq 0$ onto the upper half of the w-plane. Describe corresponding portions of the boundaries.
4. Find the image of the semi-infinite strip $x \geq 0,0 \leq y \leq \pi$ under the transformation $w=\exp z$, and describe corresponding portions of the boundaries.
