Class Exercise 4.

- 1. Let the simple closed contour C be the circle |z| = 1. Giving reasons, find $\int_C f(z)dz$ for each of the following functions.
 - (a) $f(z) = ze^{-z}$; (b) $f(z) = 1/(z^2 + 2z + 2)$; (c) $f(z) = \operatorname{sech} z$; (d) $f(z) = \tan z$; (e) $f(z) = \operatorname{Log} (z + 2)$.
- 2. Show that if $z_1 \neq 0$, $z_2 \neq 0$ and $z_1 \neq z_2$, then $\int_{z_1}^{z_2} (1/z^2) dz = 1/z_1 1/z_2$. whenever the path of integration is interior to a simply closed domain which does not contain the origin. Show how it follows that, for any simple closed contour C where the origin is either an interior or exterior point, $\int_C (1/z^2) dz = 0$.
- 3. Let C denote the boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$, where C is described in the positive (anti-clockwise) sense. Evaluate each of these integrals:

(a)
$$\int_C \frac{e^{-z}}{z - \pi i/2} dz$$
; (b) $\int_C \frac{\cos z}{z(z^2 + 8)} dz$; (c) $\int_C \frac{z}{2z + 1} dz$.

4. Let C be the unit circle $z = \exp(i\theta)$ described from $\theta = -\pi$ to $\theta = \pi$. First show that, for any real constant a, $\int_C e^{az}/z dz = 2\pi i$.

Then write the integral in terms of θ to derive the formula

$$\int_0^\pi e^{a\cos heta}\cos(a\sin heta)d heta=\pi.$$