Class Exercise 4.

1. Let the simple closed contour C be the circle $|z|=1$. Giving reasons, find $\int_{C} f(z) d z$ for each of the following functions.
(a) $f(z)=z e^{-z}$;
(b) $f(z)=1 /\left(z^{2}+2 z+2\right)$;
(c) $f(z)=\operatorname{sech} z$;
(d) $f(z)=\tan z$;
(e) $f(z)=\log (z+2)$.
2. Show that if $z_{1} \neq 0, z_{2} \neq 0$ and $z_{1} \neq z_{2}$, then $\int_{z_{1}}^{z_{2}}\left(1 / z^{2}\right) d z=1 / z_{1}-1 / z_{2}$. whenever the path of integration is interior to a simply closed domain which does not contain the origin. Show how it follows that, for any simple closed contour C where the origin is either an interior or exterior point, $\int_{C}\left(1 / z^{2}\right) d z=0$.
3. Let C denote the boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$, where C is described in the positive (anti-clockwise) sense. Evaluate each of these integrals:
(a) $\int_{C} \frac{e^{-z}}{z-\pi i / 2} d z ;$
(b) $\int_{C} \frac{\cos z}{z\left(z^{2}+8\right)} d z$;
(c) $\int_{C} \frac{z}{2 z+1} d z$.
4. Let C be the unit circle $z=\exp (i \theta)$ described from $\theta=-\pi$ to $\theta=\pi$. First show that, for any real constant $a, \int_{C} e^{a z} / z d z=2 \pi i$.
Then write the integral in terms of θ to derive the formula

$$
\int_{0}^{\pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta=\pi
$$

