Class Exercise 5.

1. By considering the remainder $R_N(z)$, show that

$$\sum_{n=1}^{\infty} z^n = rac{z}{(1-z)}$$

where z is any complex number such that |z| < 1.

$$2. ext{ Show that if } \sum_{n=1}^\infty z_n = S ext{ then } \sum_{n=1}^\infty ar z_n = ar S.$$

3. Show that if z is the limit of the sequence z_n (n = 1, 2, 3, ...) and if $|z_n| \leq M$ for all n, then $|z| \leq M$.

4. Show that
$$e^z = e + e \sum_{n=1}^{\infty} (z-1)^n / n!$$
 when $|z| < \infty$.

5. Prove that when 0 < |z| < 4,

$$rac{1}{4z-z^2} = \sum_{n=0}^\infty rac{z^{n-1}}{4^{n+1}}.$$