Class Exercise 5.

1. By considering the remainder $R_{N}(z)$, show that

$$
\sum_{n=1}^{\infty} z^{n}=\frac{z}{(1-z)}
$$

where z is any complex number such that $|z|<1$.
2. Show that if $\sum_{n=1}^{\infty} z_{n}=S$ then $\sum_{n=1}^{\infty} \overline{z_{n}}=\bar{S}$.
3. Show that if z is the limit of the sequence $z_{n}(n=1,2,3, \ldots)$ and if $\left|z_{n}\right| \leq M$ for all n, then $|z| \leq M$.
4. Show that $e^{z}=e+e \sum_{n=1}^{\infty}(z-1)^{n} / n$! when $|z|<\infty$.
5. Prove that when $0<|z|<4$,

$$
\frac{1}{4 z-z^{2}}=\sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}}
$$

