Tutorial 1.

1. In each case below sketch the set and determine whether it is a domain (open and connected):
(a) $|z+2+i| \leq 1$; (b) $|2 z-3| \geq 4 ; ~(c) ~ \operatorname{Im} z<1$; (d) $|\operatorname{Im} z|>1$;
(e) $|z|>0,0 \leq \arg z \leq \pi / 3$; (f) $|z+4| \geq|z|$; (g) $0<\left|z-z_{0}\right|<\delta$, where z_{0} is a fixed point, and δ is a positive real number.
2. (a) Which sets in Q1 are neither open nor closed?
(b) Which sets in Q1 are bounded?
3. (a) If u, v are complex numbers, prove that $|u| \cdot|v|=|u v|$.
(b) If $\lim _{z \rightarrow z_{0}} f(z)=w$, show that $\lim _{z \rightarrow z_{0}}|f(z)|=|w|$.
[Note that this means that $\lim _{z \rightarrow z_{0}}|f(z)|=\left|\lim _{z \rightarrow z_{0}} f(z)\right|$.]
(c) Carefully show that the function $f(z)=|z|^{2}$ is continuous in the entire complex plane.
4. (a) Show that the function $f(z)=\bar{z}$ is nowhere differentiable.
(b) Determine whether the function $f(z)=\operatorname{Im} z$ has a derivative at any point.
5. Investigate the way in which complex numbers might be used to represent simple mappings in the plane. How would you represent (a) a translation (b) a rotation about the origin (c) a reflection in the x-axis?
What about a rotation about a point other than the origin? A reflection in some general line through the origin? A glide reflection?
