Tutorial 3.

Note: Do not use Cauchy's Theorem to solve these problems.

1. Evaluate
(a) $\int_{0}^{\pi / 4} e^{i t} d t$;
(b) $\int_{0}^{2 \pi} e^{i m t} e^{-i n t} d t$ (m, n integers).
2. Let $f(t)=u(t)+i v(t)$ be a piecewise continuous complex-valued function of a real variable t defined on an interval $a \leq t \leq b$. Show that if $F(t)=U(t)+i V(t)$ is a function such that $F^{\prime}(t)=f(t)$, then

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

For each contour C in Questions 3,4 find the value of $\int_{C} f(z) d z$. Is C a contour? Is f piecewise continuous?
3. $f(z)=(z-2) / z$, and
(a) the semicircle $z=2 e^{i \theta}(0 \leq \theta \leq \pi)$;
(b) the semicircle $z=2 e^{i \theta}(\pi \leq \theta \leq 2 \pi)$;
(c) the circle $z=2 e^{i \theta}(0 \leq \theta \leq 2 \pi)$.
4. $f(z)=e^{z}$ and C is the arc from $z=\pi i$ to $z=1$ consisting of (a) the line segment joining these points; (b) the portion of the coordinate axes joining these points.

