Tutorial 4.

1. Let C be the circle $|z|=3$ described in the positive sense.

Set $g\left(z_{0}\right)=\int_{C} \frac{2 z^{2}-z-2}{z-z_{0}} d z\left(\left|z_{0}\right| \neq 3\right)$.
(a) Find $g(2)$.(b) What is the value of $g\left(z_{0}\right)$ when $\left|z_{0}\right|>3$?
2. Let C be a simple closed contour described in the positive sense, and write
$g\left(z_{0}\right)=\int \frac{z^{3}+2 z}{\left(z-z_{0}\right)^{3}} d z$.
Find $g\left(z_{0}\right)$ (a) when z_{0} is inside C and (b) when z_{0} is outside C.
3. Find the value of the integral of $g(z)$ around the simple closed contour $|z-i|=2$ in the positive sense when
(a) $g(z)=1 /\left(z^{2}+4\right) ; ~(b) ~ g(z)=1 /\left(z^{2}+4\right)^{2}$.
4. Let function f be continuous in a closed bounded region R and analytic and not constant throughout the interior of R. Assuming that $f(z) \neq 0$ anywhere in R, consider the function $1 / f(z)$ to prove that $|f(z)|$ has a minimum value N somewhere in R, and that $|f(z)|>N$ for each point z in the interior. (This is a Minimal Modulus Theorem.)
5. Give an example to show that in Q 4 the condition $f(z) \neq 0$ anywhere in R is necessary to prove the result. That is, show that $|f(z)|$ can reach its minimum value at an interior point when that minimum value is zero.

