Tutorial 5.

1. (a) Use the Taylor Theorem to expand $\sin z$ into a Taylor series about the point $z=\pi / 2$.
(b) In retrospect, was there a smart way of doing this?
2. (a) Expand the function $1 / z$ into a series of powers of $z-1$.
(b) Use (a) to obtain by differentiation the expansion of $1 / z^{2}$ as a series of powers of $z-1$.
Give the region of validity in each case.
3. Obtain the expansion of the function $(z+1) /(z-1)$ by
(a) its Maclaurin series, and give the region of validity for the representation;
(b) its Laurent expansion for the domain $|z|>1$.
4. Expand the function $(z-1) / z^{2}$ into
(a) its Taylor series in powers of $z-1$, and give its region of validity;
(b) its Laurent series for the domain $|z-1|>1$.
[Hint: vary the ideas used in Q2.]
5. Write the Laurent series expansion of the function $1 /(z-k)$ for the domain $|z|>|k|$, where k is real and $-1<k<1$. Then write $z=e^{i \theta}$ to obtain the formulae

$$
\sum k^{n} \cos n \theta=\frac{k \cos \theta-k^{2}}{1-2 k \cos \theta+k^{2}}, \quad \sum k^{n} \sin n \theta=\frac{k \sin \theta}{1-2 k \cos \theta+k^{2}}
$$

