COLLINEAR POINTS OF A TRISECTRIX
PAUL SCOTT
University of Adelaide
Introduction
I have been unable to find any reference to the result given below, and believe it is new. I would be glad to hear from any reader who knows of any previous history of this result.
I discovered this result whilst playing with an applet which illustrated the three parallel tangent property of the cardioid.
Let the origin O lie at the cusp of a cardioid, and let points P, R, S be points lying on the cardioid such that segments OP, OQ and OR make equal angles of 120°. Then it is known that the tangents at P, Q and R are parallel for all such positions of the points.
I next extended the applet to include the whole family of limaçons of which the cardioid is a member. I wondered if the parallel tangent property extended to other curves of the family. The applet indicated that the answer is negative here, but I did notice something else of interest.
Discarding the tangents, I noticed that for one particular member of the limaçon family known as the trisectrix, the points P, R and S appeared to be always collinear.
The theorem
The general limaçon has polar equation r = 2a cos + k.
When k = 2a, the limaçon is a cardioid. When k = a the limaçon is a trisectrix. This curve has some historical interest in that it can be used to trisect a general angle.
Let the trisectrix have polar equation r = 2 cos + 1. We change the above notation to Q, R, S to avoid using to denote the angle for P !
Theorem Let Q, R, S be three points of the trisectrix which make equal angles of 120° at the origin. Then points Q, R, S are collinear.
Proof Let Q have polar coordinates (r, ). Then Q has Cartesian coordinates
(r cos , r sin ) = (2 cos2 + cos , 2 cos sin + sin ).
Similarly R has Cartesian coordinates (2 cos2 + cos , 2 cos sin + sin ),
and S has Cartesian coordinates (2 cos2 + cos , 2 cos sin + sin ),
where = + 2/3, and = 2/3 say.
To test whether Q, R, S are collinear, we check that the slopes of segments QR, QS are equal.
Proof of the theorem
A proof is given below. This complicated trigonometric manipulation deserves no marks for elegance, but it does convince me that the result is true! I would be glad to hear from anyone who can find a simple proof of this result.
To test whether Q, R S are collinear, we check that the slopes of segments QR, QS are equal. That is, we check that
(2 cos sin + sin ) (2 cos sin + sin )
(2 cos 2 + cos ) (2 cos 2 + cos )
= (2 cos sin + sin ) (2 cos sin + sin )
(2 cos 2 + cos ) (2 cos 2 + cos )
LHS = 2 cos sin + sin 2 cos ( + 2/3) sin ( + 2 /3) sin ( + 2 /3)
2 cos 2 + cos 2 cos 2 ( + 2 /3) cos ( + 2 /3)
= 4 cos sin + 2 sin + [cos + 3 sin ] [3 cos sin ] [3cos sin ]
4 cos 2 + 2 cos [cos + 3 sin )]2 + [cos + 3 sin )]
= 4 cos sin + 2 sin + 3 cos2 + 2 cos sin 3 sin 2 3cos + sin
4 cos 2 + 2 cos cos 2 23 cos sin 3 sin 2 + cos + 3 sin
= 3 cos2 + 6 cos sin 3 sin 2 3cos + 3 sin
3 cos 2 23 cos sin 3 sin 2 + 3 cos + 3 sin
RHS = 2 cos sin + sin 2 cos ( 2 /3) sin ( 2 /3) sin ( 2 /3)
2 cos 2 + cos 2 cos 2 ( 2 /3) cos ( 2 /3)
= 4 cos sin + 2 sin + [cos 3 sin ] [3 cos sin ] + [3cos + sin ]
4 cos 2 + 2 cos [cos 3 sin )]2 + [cos 3 sin )]
= 4 cos sin + 2 sin 3 cos2 + 2 sin cos + 3 sin 2 + 3cos + sin
4 cos 2 + 2 cos [cos 2 23 sin cos + 3 sin 2 ] + cos 3 sin
= 3 cos2 + 6 cos sin + 3 sin 2 + 3cos + 3 sin
3 cos 2 + 23 cos sin 3 sin 2 + 3 cos 3 sin
Now these two expressions appear to be different, but are they in fact equal? Lets check. We require:
[3 cos2 + 6 cos sin 3 sin 2 3cos + 3 sin ] x
[3 cos 2 + 23 cos sin 3 sin 2 + 3 cos 3 sin ]
= [ 3 cos2 + 6 cos sin + 3 sin 2 + 3cos + 3 sin ] x
[3 cos 2 23 cos sin 3 sin 2 + 3 cos + 3 sin ].
This is true if and only if (ignore the underlining for the moment)
33cos4 + 6 cos3 sin 33 cos2 sin 2 + 33cos3 3 cos2 sin
+ 18 cos3 sin + 123 cos2 sin 2 18 cos sin3 + 18 cos2 sin 6v3 cos sin 2
33 cos2 sin 2 6 cos q sin3 + 3 3sin4 33 cos sin 2 + 3 sin3
33cos3 6 cos2 sin + 33 cos sin2 33 cos2 + 3 cos sin
+ 9 cos2 sin + 63 cos sin 2 9sin3 + 9 cos sin 33 sin2
= 33cos4 + 6 cos3 sin + 33 cos2 sin 2 33cos3 3 cos2 sin
+ 18 cos3 sin 123 cos2 sin 2 18 cos sin3 + 18 cos2 sin + 63 cos sin 2
+ 33 cos2 sin 2 6 cos q sin3 3 3sin4 + 33 cos sin 2 + 3 sin3
+ 33cos3 6 cos2 sin 33 cos sin2 + 33 cos2 + 3 cos sin
+ 9 cos2 sin 63 cos sin 2 9sin3 + 9 cos sin + 33 sin2
Deleting the underlined terms which are the same on both sides, that is, if and only if
33cos4 33 cos2 sin 2 + 33cos3 + 123 cos2 sin 2 63 cos sin 2
33 cos2 sin 2 + 3 3sin4 33 cos sin 2 33cos3 + 33 cos sin2
33 cos2 + 63 cos sin 2 33 sin2
= 33cos4 + 33 cos2 sin 2 33cos3 123 cos2 sin 2 + 6v3 cos sin 2
+ 33 cos2 sin 2 3 3sin4 + 33 cos sin 2 + 33cos3
33 cos sin2 + 33 cos2 63 cos sin 2 + 33 sin2 .
Now, again ignoring the underlining,
3cos4 3 cos2 sin 2 + 3cos3 + 43 cos2 sin 2 23 cos sin 2 3 cos2 sin 2
+ 3sin4 3 cos sin 2 3cos3 + 3 cos sin2 3 cos2 + 23 cos sin 2
3 sin2 = 0.
Cancelling the underlined terms, that is,
cos4 cos2 sin 2 + 4 cos2 sin 2 cos2 sin 2 + sin4 cos2 sin2 = 0
or, cos4 + 2 cos2 sin 2 + sin4 cos2 sin2 = 0,
or (cos2 + sin2 ) 2 1 = 0, which is true.
Hence segments QR, QS have equal slopes, and points Q, R, S are collinear as required.
An alternative proof
Viewer Ross Brown from Ontario, Canada has given a nice alternative proof of this result using distances rather than slopes. His proof can be seen here.
Reference
For the context of the discovery of this result, see
http://paulscott.info/DC/limacon/limacon-expl.html
6 October, 2008
mail@paulscott.info paulscott.info
|
||||
|
Visitors since
6/10/08 |
|||