COLLINEAR POINTS OF A TRISECTRIX
PAUL SCOTT
University of Adelaide
Introduction
I have been unable to find any reference to the result given below, and believe it is new. I would be glad to hear from any reader who knows of any previous history of this result.
I discovered this result whilst playing with an applet which illustrated the three parallel tangent property of the cardioid.
Let the origin O lie at the cusp of a cardioid, and let points P, R, S be points lying on the cardioid such that segments OP, OQ and OR make equal angles of 120°. Then it is known that the tangents at P, Q and R are parallel for all such positions of the points.
I next extended the applet to include the whole family of limaçons of which the cardioid is a member. I wondered if the parallel tangent property extended to other curves of the family. The applet indicated that the answer is negative here, but I did notice something else of interest.
Discarding the tangents, I noticed that for one particular member of the limaçon family known as the trisectrix, the points P, R and S appeared to be always collinear.
The theorem
The general limaçon has polar equation r = 2a cos + k.
When k = 2a, the limaçon is a cardioid. When k = a the limaçon is a trisectrix. This curve has some historical interest in that it can be used to trisect a general angle.
Let the trisectrix have polar equation r = 2 cos + 1. We change the above notation to Q, R, S to avoid using
to denote the angle for P !
Theorem Let Q, R, S be three points of the trisectrix which make equal angles of 120° at the origin. Then points Q, R, S are collinear.
Proof Let Q have polar coordinates (r, ). Then Q has Cartesian coordinates
(r cos , r sin
) = (2 cos2
+ cos
, 2 cos
sin
+ sin
).
Similarly R has Cartesian coordinates (2 cos2 + cos
, 2 cos
sin
+ sin
),
and S has Cartesian coordinates (2 cos2 + cos
, 2 cos
sin
+ sin
),
where =
+ 2
/3, and
=
2
/3 say.
To test whether Q, R, S are collinear, we check that the slopes of segments QR, QS are equal.
Proof of the theorem
A proof is given below. This complicated trigonometric manipulation deserves no marks for elegance, but it does convince me that the result is true! I would be glad to hear from anyone who can find a simple proof of this result.
To test whether Q, R S are collinear, we check that the slopes of segments QR, QS are equal. That is, we check that
(2 cos sin
+ sin
) (2 cos
sin
+ sin
)
(2 cos 2 + cos
) (2 cos 2
+ cos
)
= (2 cos sin
+ sin
) (2 cos
sin
+ sin
)
(2 cos 2 + cos
) (2 cos 2
+ cos
)
LHS = 2 cos sin
+ sin
2 cos (
+ 2
/3) sin (
+ 2
/3) sin (
+ 2
/3)
2 cos 2 + cos
2 cos 2 (
+ 2
/3) cos (
+ 2
/3)
= 4 cos sin
+ 2 sin
+ [cos
+
3 sin
] [
3 cos
sin
] [
3cos
sin
]
4 cos 2 + 2 cos
[cos
+
3 sin
)]2 + [cos
+
3 sin
)]
= 4 cos sin
+ 2 sin
+
3 cos2
+ 2 cos
sin
3 sin 2
3cos
+ sin
4 cos 2 + 2 cos
cos 2
2
3 cos
sin
3 sin 2
+ cos
+
3 sin
= 3 cos2
+ 6 cos
sin
3 sin 2
3cos
+ 3 sin
3 cos 2 2
3 cos
sin
3 sin 2
+ 3 cos
+
3 sin
RHS = 2 cos sin
+ sin
2 cos (
2
/3) sin (
2
/3) sin (
2
/3)
2 cos 2 + cos
2 cos 2 (
2
/3) cos (
2
/3)
= 4 cos sin
+ 2 sin
+ [cos
3 sin
] [
3 cos
sin
] + [
3cos
+ sin
]
4 cos 2 + 2 cos
[cos
3 sin
)]2 + [cos
3 sin
)]
= 4 cos sin
+ 2 sin
3 cos2
+ 2 sin
cos
+
3 sin 2
+
3cos
+ sin
4 cos 2 + 2 cos
[cos 2
2
3 sin
cos
+ 3 sin 2
] + cos
3 sin
= 3 cos2
+ 6 cos
sin
+
3 sin 2
+
3cos
+ 3 sin
3 cos 2 + 2
3 cos
sin
3 sin 2
+ 3 cos
3 sin
Now these two expressions appear to be different, but are they in fact equal? Lets check. We require:
[3 cos2
+ 6 cos
sin
3 sin 2
3cos
+ 3 sin
] x
[3 cos 2 + 2
3 cos
sin
3 sin 2
+ 3 cos
3 sin
]
= [ 3 cos2
+ 6 cos
sin
+
3 sin 2
+
3cos
+ 3 sin
] x
[3 cos 2 2
3 cos
sin
3 sin 2
+ 3 cos
+
3 sin
].
This is true if and only if (ignore the underlining for the moment)
33cos4
+ 6 cos3
sin
3
3 cos2
sin 2
+ 3
3cos3
3 cos2
sin
+ 18 cos3 sin
+ 12
3 cos2
sin 2
18 cos
sin3
+ 18 cos2
sin
6v3 cos
sin 2
33 cos2
sin 2
6 cos q sin3
+ 3
3sin4
3
3 cos
sin 2
+ 3 sin3
33cos3
6 cos2
sin
+ 3
3 cos
sin2
3
3 cos2
+ 3 cos
sin
+ 9 cos2 sin
+ 6
3 cos
sin 2
9sin3
+ 9 cos
sin
3
3 sin2
= 33cos4
+ 6 cos3
sin
+ 3
3 cos2
sin 2
3
3cos3
3 cos2
sin
+ 18 cos3 sin
12
3 cos2
sin 2
18 cos
sin3
+ 18 cos2
sin
+ 6
3 cos
sin 2
+ 33 cos2
sin 2
6 cos q sin3
3
3sin4
+ 3
3 cos
sin 2
+ 3 sin3
+ 33cos3
6 cos2
sin
3
3 cos
sin2
+ 3
3 cos2
+ 3 cos
sin
+ 9 cos2 sin
6
3 cos
sin 2
9sin3
+ 9 cos
sin
+ 3
3 sin2
Deleting the underlined terms which are the same on both sides, that is, if and only if
33cos4
3
3 cos2
sin 2
+ 3
3cos3
+ 12
3 cos2
sin 2
6
3 cos
sin 2
33 cos2
sin 2
+ 3
3sin4
3
3 cos
sin 2
3
3cos3
+ 3
3 cos
sin2
33 cos2
+ 6
3 cos
sin 2
3
3 sin2
= 33cos4
+ 3
3 cos2
sin 2
3
3cos3
12
3 cos2
sin 2
+ 6v3 cos
sin 2
+ 33 cos2
sin 2
3
3sin4
+ 3
3 cos
sin 2
+ 3
3cos3
33 cos
sin2
+ 3
3 cos2
6
3 cos
sin 2
+ 3
3 sin2
.
Now, again ignoring the underlining,
3cos4
3 cos2
sin 2
+
3cos3
+ 4
3 cos2
sin 2
2
3 cos
sin 2
3 cos2
sin 2
+ 3sin4
3 cos
sin 2
3cos3
+
3 cos
sin2
3 cos2
+ 2
3 cos
sin 2
3 sin2
= 0.
Cancelling the underlined terms, that is,
cos4 cos2
sin 2
+ 4 cos2
sin 2
cos2
sin 2
+ sin4
cos2
sin2
= 0
or, cos4 + 2 cos2
sin 2
+ sin4
cos2
sin2
= 0,
or (cos2 + sin2
) 2 1 = 0, which is true.
Hence segments QR, QS have equal slopes, and points Q, R, S are collinear as required.
An alternative proof
Viewer Ross Brown from Ontario, Canada has given a nice alternative proof of this result using distances rather than slopes. His proof can be seen here.
Reference
For the context of the discovery of this result, see
http://paulscott.info/DC/limacon/limacon-expl.html
6 October, 2008
mail@paulscott.info paulscott.info
|
||||
|
Visitors since
6/10/08 |
|||