Theorem 2.1 Proof () Let us suppose that { 1. } By definition, given , there exists > 0 : 0 < { 2. } |u(x, y) - u0 + i(v(x, y) - v0)| < . We deduce that { 3. }, 0 < |y - y0| < /2 |u(x, y ) - u0| < , { 4. }. This completes this part of the proof. Match the above boxes 1, 2, 3, 4 with the selections: (a) |v(x, y) - v0| < (b) |x - x0 + i(y - y0)| < (c) (d) 0 < |x - x0| < /2
|