1. If f(z) = u + iv and the Cauchy-Riemann equations hold for u, v, then f '(z) must exist.
(a) True ; (b) False .
2. For f = u + iv, the Cauchy-Riemann equations are ux = vy and vx = uy.
(a) True ; (b) False .
3. If f(z) = (x2 - y2 + 2) + 2ixy = u + iv, then the Cauchy-Riemann equations hold.
(a) True ; (b) False .
4. If f(z) is differentiable, then f '(z) = vy - i uy.
(a) True ; (b) False .