Theorem 6.1 If zn = xn + iyn (n = 1, 2, ...) and z = x + iy, then zn = z xn = x and yn = y. Proof () Given > 0 there exist N1, N2 : { 1 } | xn x | < /2 , n > N2 { 2 }. So { 3 } | xn x | + | yn y | < . Match the above boxes 1, 2, 3, 4 with the selections
|