CONTENTS     
       Title Page  Prologue _ _
    . 1.  Creating the images _ Turtle graphics; Programming languages
    . 2.  How long is a piece of string? _ Koch Island; Perimeter
    . 3.  Infinite coastline _ Minkowski Island; Area, perimeter, isoperimetric problem
    . 4.  Tale of the dragon _ Dragon curve; Experiment, conjecture, proof
    . 5.  How many holes has a sieve? _ Sierpinski Sieve; Pascal's triangle, binomials, modulus
    . 6.  A Mad Hatter's three party _ Ternary tree; Number base
    . 7.  A meeting of squares _ Pythagorean Trees; Pythagoras’ Theorem, Triples
    . 8.  Blurred dimensions _ Peano Curve; Dimension
    . 9.  A magic carpet ride _ Sierpinski Carpet, Menger Sponge; Induction, recursion
    . 10. The attraction of attractors _ Sierpinski Sieve, attractors, IFS; Limits, mappings
    . 11. Predictable dice _ Sierpinski Sieve IFS; Probability, random numbers, IFS
    . 12. Endless complexity _ Mandelbrot Set; Complex numbers
    . 13. A catalogue of chaos _ Julia Sets; Coordinate systems, more complex numbers